These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17343984)

  • 1. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi.
    Islam E; Yang X; Li T; Liu D; Jin X; Meng F
    J Hazard Mater; 2007 Aug; 147(3):806-16. PubMed ID: 17343984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi.
    Islam E; Liu D; Li T; Yang X; Jin X; Mahmood Q; Tian S; Li J
    J Hazard Mater; 2008 Jun; 154(1-3):914-26. PubMed ID: 18162296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Pb toxicity on the growth and physiology of two ecotypes of Elsholtzia argyi and its alleviation by Zn.
    Islam E; Liu D; Li T; Yang X; Jin X; Khan MA; Mahmood Q; Hayat Y; Imtiaz M
    Environ Toxicol; 2011 Aug; 26(4):403-16. PubMed ID: 20862735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture.
    Weng G; Wu L; Wang Z; Luo Y; Christie P
    Environ Int; 2005 Aug; 31(6):880-4. PubMed ID: 16005517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of root morphology and Pb uptake by two species of Elsholtzia under Pb toxicity.
    Peng HY; Tian SK; Yang XE
    J Zhejiang Univ Sci B; 2005 Jun; 6(6):546-52. PubMed ID: 15909342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies of copper tolerance and uptake by three plant species of the genus elsholtzia.
    Xia Y; Shen ZG
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):53-7. PubMed ID: 17599223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer.
    Zou T; Li T; Zhang X; Yu H; Luo H
    J Hazard Mater; 2011 Feb; 186(1):683-9. PubMed ID: 21144654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of copper and lead uptake and accumulation by two species of Elsholtzia.
    Peng HY; Yang XE
    Bull Environ Contam Toxicol; 2007 Feb; 78(2):152-7. PubMed ID: 17401511
    [No Abstract]   [Full Text] [Related]  

  • 9. Assessment of comparative toxicities of lead and copper using plant assay.
    An YJ
    Chemosphere; 2006 Mar; 62(8):1359-65. PubMed ID: 16153686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytofiltration of copper from contaminated water: growth response, copper uptake and lignin content in Elsholtzia splendens and Elsholtzia argyi.
    Tian S; Peng H; Yang X; Lu L; Zhang L
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):85-9. PubMed ID: 18421404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii.
    Liu D; Li TQ; Jin XF; Yang XE; Islam E; Mahmood Q
    J Integr Plant Biol; 2008 Feb; 50(2):129-40. PubMed ID: 18713434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root responses and metal accumulation in two contrasting ecotypes of Sedum alfredii Hance under lead and zinc toxic stress.
    Li TQ; Yang XE; Jin XF; He ZL; Stoffella PJ; Hu QH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(5):1081-96. PubMed ID: 15887576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata).
    Kopittke PM; Asher CJ; Kopittke RA; Menzies NW
    Environ Pollut; 2007 Nov; 150(2):280-7. PubMed ID: 17379363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead accumulation and soil microbial activity in the rhizosphere of the mining and non-mining ecotypes of Athyrium wardii (Hook.) Makino in adaptation to lead-contaminated soils.
    Zhang Q; Zhan J; Yu H; Li T; Zhang X; Huang H; Zhang Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32957-32966. PubMed ID: 31512134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum.
    Wójcik M; Tukiendorf A
    Phytochemistry; 2014 Apr; 100():60-5. PubMed ID: 24512840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium album L.
    Hu R; Sun K; Su X; Pan YX; Zhang YF; Wang XP
    J Hazard Mater; 2012 Feb; 205-206():131-8. PubMed ID: 22257568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences of Cu accumulation and Cu-induced ATPase activity in roots of two populations of Elsholtzia haichowensis Sun.
    Ke W; Xiong Z; Chen S; Wang Z
    Environ Toxicol; 2008 Apr; 23(2):193-9. PubMed ID: 18214917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii.
    Huang H; Gupta DK; Tian S; Yang XE; Li T
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1640-51. PubMed ID: 22146912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in chemical forms, subcellular distribution, and thiol compounds involved in Pb accumulation and detoxification in Athyrium wardii (Hook.).
    Zhao L; Li T; Yu H; Chen G; Zhang X; Zheng Z; Li J
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12676-88. PubMed ID: 25913310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive effects of Zn, Pb and Cd in barley.
    Aery NC; Rana DK
    J Environ Sci Eng; 2007 Jan; 49(1):71-6. PubMed ID: 18472565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.