These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 17344208)
1. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. White TA; Krishnan N; Becker DF; Tanner JJ J Biol Chem; 2007 May; 282(19):14316-27. PubMed ID: 17344208 [TBL] [Abstract][Full Text] [Related]
2. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions. Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892 [TBL] [Abstract][Full Text] [Related]
3. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. Zhang M; White TA; Schuermann JP; Baban BA; Becker DF; Tanner JJ Biochemistry; 2004 Oct; 43(39):12539-48. PubMed ID: 15449943 [TBL] [Abstract][Full Text] [Related]
4. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA). Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662 [TBL] [Abstract][Full Text] [Related]
5. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase. White TA; Tanner JJ Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Aug; 61(Pt 8):737-9. PubMed ID: 16511143 [TBL] [Abstract][Full Text] [Related]
6. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA. Baban BA; Vinod MP; Tanner JJ; Becker DF Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release. Luo M; Arentson BW; Srivastava D; Becker DF; Tanner JJ Biochemistry; 2012 Dec; 51(50):10099-108. PubMed ID: 23151026 [TBL] [Abstract][Full Text] [Related]
8. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor. Huijbers MM; Martínez-Júlvez M; Westphal AH; Delgado-Arciniega E; Medina M; van Berkel WJ Sci Rep; 2017 Mar; 7():43880. PubMed ID: 28256579 [TBL] [Abstract][Full Text] [Related]
9. Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery. Bogner AN; Ji J; Tanner JJ Protein Eng Des Sel; 2022 Feb; 35():. PubMed ID: 36448708 [TBL] [Abstract][Full Text] [Related]
10. Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus. Huijbers MME; van Alen I; Wu JW; Barendregt A; Heck AJR; van Berkel WJH Molecules; 2018 Jan; 23(1):. PubMed ID: 29337919 [TBL] [Abstract][Full Text] [Related]
11. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein. Moxley MA; Becker DF Biochemistry; 2012 Jan; 51(1):511-20. PubMed ID: 22148640 [TBL] [Abstract][Full Text] [Related]
12. Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate. Campbell AC; Becker DF; Gates KS; Tanner JJ ACS Chem Biol; 2020 Apr; 15(4):936-944. PubMed ID: 32159324 [TBL] [Abstract][Full Text] [Related]
13. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein. Lee YH; Nadaraia S; Gu D; Becker DF; Tanner JJ Nat Struct Biol; 2003 Feb; 10(2):109-14. PubMed ID: 12514740 [TBL] [Abstract][Full Text] [Related]
15. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy. Zhu W; Becker DF Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643 [TBL] [Abstract][Full Text] [Related]
16. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA). Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758 [TBL] [Abstract][Full Text] [Related]
17. High yields of active Thermus thermophilus proline dehydrogenase are obtained using maltose-binding protein as a solubility tag. Huijbers MM; van Berkel WJ Biotechnol J; 2015 Mar; 10(3):395-403. PubMed ID: 25545499 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor. Krishnan N; Becker DF Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737 [TBL] [Abstract][Full Text] [Related]
19. Structure, function, and mechanism of proline utilization A (PutA). Liu LK; Becker DF; Tanner JJ Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849 [TBL] [Abstract][Full Text] [Related]
20. Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli. Moxley MA; Tanner JJ; Becker DF Arch Biochem Biophys; 2011 Dec; 516(2):113-20. PubMed ID: 22040654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]