BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17344222)

  • 1. EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability.
    Fu J; Menzies K; Freeman RS; Taubman MB
    J Biol Chem; 2007 Apr; 282(17):12410-8. PubMed ID: 17344222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-kappaB-dependent pathway.
    Fu J; Taubman MB
    J Biol Chem; 2010 Mar; 285(12):8927-35. PubMed ID: 20089853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation.
    Huang SC; Zhou A; Nguyen DT; Zhang HS; Benz EJ
    J Biol Chem; 2016 Dec; 291(49):25591-25607. PubMed ID: 27780863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic HIF1A regulation during human placental development.
    Ietta F; Wu Y; Winter J; Xu J; Wang J; Post M; Caniggia I
    Biol Reprod; 2006 Jul; 75(1):112-21. PubMed ID: 16611863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity.
    Foxler DE; Bridge KS; James V; Webb TM; Mee M; Wong SC; Feng Y; Constantin-Teodosiu D; Petursdottir TE; Bjornsson J; Ingvarsson S; Ratcliffe PJ; Longmore GD; Sharp TV
    Nat Cell Biol; 2012 Jan; 14(2):201-8. PubMed ID: 22286099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL.
    Xie L; Xiao K; Whalen EJ; Forrester MT; Freeman RS; Fong G; Gygi SP; Lefkowitz RJ; Stamler JS
    Sci Signal; 2009 Jul; 2(78):ra33. PubMed ID: 19584355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases.
    Marxsen JH; Stengel P; Doege K; Heikkinen P; Jokilehto T; Wagner T; Jelkmann W; Jaakkola P; Metzen E
    Biochem J; 2004 Aug; 381(Pt 3):761-7. PubMed ID: 15104534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNF stimulation induces VHL overexpression and impairs angiogenic potential in skeletal muscle myocytes.
    Basic VT; Jacobsen A; Sirsjö A; Abdel-Halim SM
    Int J Mol Med; 2014 Jul; 34(1):228-36. PubMed ID: 24820910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen.
    del Peso L; Castellanos MC; Temes E; Martin-Puig S; Cuevas Y; Olmos G; Landazuri MO
    J Biol Chem; 2003 Dec; 278(49):48690-5. PubMed ID: 14506252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha.
    Baek JH; Mahon PC; Oh J; Kelly B; Krishnamachary B; Pearson M; Chan DA; Giaccia AJ; Semenza GL
    Mol Cell; 2005 Feb; 17(4):503-12. PubMed ID: 15721254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline hydroxylation and gene expression.
    Kaelin WG
    Annu Rev Biochem; 2005; 74():115-28. PubMed ID: 15952883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EGLN3 inhibition of NF-κB is mediated by prolyl hydroxylase-independent inhibition of IκB kinase γ ubiquitination.
    Fu J; Taubman MB
    Mol Cell Biol; 2013 Aug; 33(15):3050-61. PubMed ID: 23732909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammalian EGLN genes have distinct patterns of mRNA expression and regulation.
    Lieb ME; Menzies K; Moschella MC; Ni R; Taubman MB
    Biochem Cell Biol; 2002; 80(4):421-6. PubMed ID: 12234095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. von Hippel-Lindau β-domain-luciferase fusion protein as a bioluminescent hydroxyproline sensor for a hypoxia-inducible factor prolyl hydroxylase assay.
    Hong S; Yum S; Ha NC; Jung Y
    Anal Biochem; 2010 Dec; 407(2):220-5. PubMed ID: 20705044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer.
    Lee S; Nakamura E; Yang H; Wei W; Linggi MS; Sajan MP; Farese RV; Freeman RS; Carter BD; Kaelin WG; Schlisio S
    Cancer Cell; 2005 Aug; 8(2):155-67. PubMed ID: 16098468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased hypoxia-inducible factor-1α in striated muscle of tumor-bearing mice.
    Devine RD; Bicer S; Reiser PJ; Wold LE
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1154-H1162. PubMed ID: 28341633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.
    Aprelikova O; Chandramouli GV; Wood M; Vasselli JR; Riss J; Maranchie JK; Linehan WM; Barrett JC
    J Cell Biochem; 2004 Jun; 92(3):491-501. PubMed ID: 15156561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1.
    To KK; Huang LE
    J Biol Chem; 2005 Nov; 280(45):38102-7. PubMed ID: 16157596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress.
    Mikhaylova O; Ignacak ML; Barankiewicz TJ; Harbaugh SV; Yi Y; Maxwell PH; Schneider M; Van Geyte K; Carmeliet P; Revelo MP; Wyder M; Greis KD; Meller J; Czyzyk-Krzeska MF
    Mol Cell Biol; 2008 Apr; 28(8):2701-17. PubMed ID: 18285459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases.
    Chowdhury R; McDonough MA; Mecinović J; Loenarz C; Flashman E; Hewitson KS; Domene C; Schofield CJ
    Structure; 2009 Jul; 17(7):981-9. PubMed ID: 19604478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.