These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings. Kagan I; Gur M; Snodderly DM J Neurophysiol; 2002 Nov; 88(5):2557-74. PubMed ID: 12424294 [TBL] [Abstract][Full Text] [Related]
4. [Influence of visual stimuli on eye-position related activities of neurons in primary visual cortex (V1) of awake monkeys]. Guo K; Li CY Sheng Li Xue Bao; 1997 Aug; 49(4):400-6. PubMed ID: 9812871 [TBL] [Abstract][Full Text] [Related]
5. Perimetry while moving the eyes: implications for the variability of visual field defects. Toepfer A; Kasten E; Guenther T; Sabel BA J Neuroophthalmol; 2008 Dec; 28(4):308-19. PubMed ID: 19145132 [TBL] [Abstract][Full Text] [Related]
9. Image structure at the center of gaze during free viewing. Dragoi V; Sur M J Cogn Neurosci; 2006 May; 18(5):737-48. PubMed ID: 16768374 [TBL] [Abstract][Full Text] [Related]
10. Decorrelation of neural activity during fixational instability: possible implications for the refinement of V1 receptive fields. Rucci M; Casile A Vis Neurosci; 2004; 21(5):725-38. PubMed ID: 15683560 [TBL] [Abstract][Full Text] [Related]
11. Representation of eye position in primate inferior colliculus. Porter KK; Metzger RR; Groh JM J Neurophysiol; 2006 Mar; 95(3):1826-42. PubMed ID: 16221747 [TBL] [Abstract][Full Text] [Related]
13. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat. Naito T; Sadakane O; Okamoto M; Sato H Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429 [TBL] [Abstract][Full Text] [Related]
14. Comparison between monkey and human visual fields using a personal computer system. Sasaoka M; Hara H; Nakamura K Behav Brain Res; 2005 Jun; 161(1):18-30. PubMed ID: 15904706 [TBL] [Abstract][Full Text] [Related]
15. A model of the dynamics of retinal activity during natural visual fixation. Desbordes G; Rucci M Vis Neurosci; 2007; 24(2):217-30. PubMed ID: 17640413 [TBL] [Abstract][Full Text] [Related]
16. Changes in the functional visual field during search with and without eye movements. Motter BC; Simoni DA Vision Res; 2008 Oct; 48(22):2382-93. PubMed ID: 18722398 [TBL] [Abstract][Full Text] [Related]
17. The temporal and spatial limits of compensation for fixational eye movements. Wallis G Vision Res; 2006 Sep; 46(18):2848-58. PubMed ID: 16643979 [TBL] [Abstract][Full Text] [Related]
18. Visual receptive fields of neurons in primary visual cortex (V1) move in space with the eye movements of fixation. Gur M; Snodderly DM Vision Res; 1997 Feb; 37(3):257-65. PubMed ID: 9135859 [TBL] [Abstract][Full Text] [Related]
19. Miniature eye movements enhance fine spatial detail. Rucci M; Iovin R; Poletti M; Santini F Nature; 2007 Jun; 447(7146):851-4. PubMed ID: 17568745 [TBL] [Abstract][Full Text] [Related]
20. Eye dominance and response latency in area V1 of the monkey. Romero MC; Castro AF; Bermudez MA; Perez R; Gonzalez F Vis Neurosci; 2007; 24(5):757-61. PubMed ID: 17915042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]