These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 17344534)
1. Fluid dynamic models of flagellar and ciliary beating. Dillon RH; Fauci LJ; Omoto C; Yang X Ann N Y Acad Sci; 2007 Apr; 1101():494-505. PubMed ID: 17344534 [TBL] [Abstract][Full Text] [Related]
2. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. Dillon RH; Fauci LJ J Theor Biol; 2000 Dec; 207(3):415-30. PubMed ID: 11082310 [TBL] [Abstract][Full Text] [Related]
3. An integrative computational model of multiciliary beating. Yang X; Dillon RH; Fauci LJ Bull Math Biol; 2008 May; 70(4):1192-215. PubMed ID: 18236120 [TBL] [Abstract][Full Text] [Related]
4. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation. Lindemann CB Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864 [TBL] [Abstract][Full Text] [Related]
5. The geometric clutch as a working hypothesis for future research on cilia and flagella. Lindemann CB Ann N Y Acad Sci; 2007 Apr; 1101():477-93. PubMed ID: 17303832 [TBL] [Abstract][Full Text] [Related]
6. Flagellar and ciliary beating: the proven and the possible. Lindemann CB; Lesich KA J Cell Sci; 2010 Feb; 123(Pt 4):519-28. PubMed ID: 20145000 [TBL] [Abstract][Full Text] [Related]
7. Elastic extension and jump of the flagellar nexin links: a theoretical mechanical cycle. Cibert C Cell Motil Cytoskeleton; 2001 Jul; 49(3):161-75. PubMed ID: 11668585 [TBL] [Abstract][Full Text] [Related]
8. Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia. Brokaw CJ Cell Motil Cytoskeleton; 2005 Jan; 60(1):35-47. PubMed ID: 15573415 [TBL] [Abstract][Full Text] [Related]
9. A moving image of flagella: news and views on the mechanisms involved in axonemal beating. Cosson J Cell Biol Int; 1996 Feb; 20(2):83-94. PubMed ID: 8935152 [TBL] [Abstract][Full Text] [Related]
10. How are different ciliary beat patterns produced? Sleigh MA; Barlow DI Symp Soc Exp Biol; 1982; 35():139-57. PubMed ID: 6223395 [TBL] [Abstract][Full Text] [Related]
11. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules. Lorch DP; Lindemann CB; Hunt AJ Cell Motil Cytoskeleton; 2008 Jun; 65(6):487-94. PubMed ID: 18421707 [TBL] [Abstract][Full Text] [Related]
12. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. Wirschell M; Hendrickson T; Sale WS Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744 [TBL] [Abstract][Full Text] [Related]
14. How signals of calcium ions initiate the beats of cilia and flagella. Satarić MV; Nemeš T; Sekulić D; Tuszynski JA Biosystems; 2019 Aug; 182():42-51. PubMed ID: 31202860 [TBL] [Abstract][Full Text] [Related]
15. Curvature regulation of the ciliary beat through axonemal twist. Sartori P; Geyer VF; Howard J; Jülicher F Phys Rev E; 2016 Oct; 94(4-1):042426. PubMed ID: 27841522 [TBL] [Abstract][Full Text] [Related]
16. Detergent-extracted models for the study of cilia or flagella. Lindemann CB; Lesich KA Methods Mol Biol; 2009; 586():337-53. PubMed ID: 19768440 [TBL] [Abstract][Full Text] [Related]
17. Functional protofilament numbering of ciliary, flagellar, and centriolar microtubules. Linck RW; Stephens RE Cell Motil Cytoskeleton; 2007 Jul; 64(7):489-95. PubMed ID: 17366641 [TBL] [Abstract][Full Text] [Related]
18. The chirality of ciliary beats. Hilfinger A; Jülicher F Phys Biol; 2008 Mar; 5(1):016003. PubMed ID: 18356578 [TBL] [Abstract][Full Text] [Related]