BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 17344853)

  • 1. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
    Morrish TA; Garcia-Perez JL; Stamato TD; Taccioli GE; Sekiguchi J; Moran JV
    Nature; 2007 Mar; 446(7132):208-12. PubMed ID: 17344853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.
    Kopera HC; Moldovan JB; Morrish TA; Garcia-Perez JL; Moran JV
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20345-50. PubMed ID: 21940498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition.
    Morrish TA; Gilbert N; Myers JS; Vincent BJ; Stamato TD; Taccioli GE; Batzer MA; Moran JV
    Nat Genet; 2002 Jun; 31(2):159-65. PubMed ID: 12006980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication.
    Flasch DA; Macia Á; Sánchez L; Ljungman M; Heras SR; García-Pérez JL; Wilson TE; Moran JV
    Cell; 2019 May; 177(4):837-851.e28. PubMed ID: 30955886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition.
    Servant G; Streva VA; Derbes RS; Wijetunge MI; Neeland M; White TB; Belancio VP; Roy-Engel AM; Deininger PL
    Genetics; 2017 Jan; 205(1):139-153. PubMed ID: 28049704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells.
    Coufal NG; Garcia-Perez JL; Peng GE; Marchetto MC; Muotri AR; Mu Y; Carson CT; Macia A; Moran JV; Gage FH
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20382-7. PubMed ID: 22159035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities.
    Kines KJ; Sokolowski M; DeFreece C; Shareef A; deHaro DL; Belancio VP
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition.
    Feng Q; Moran JV; Kazazian HH; Boeke JD
    Cell; 1996 Nov; 87(5):905-16. PubMed ID: 8945517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple fates of L1 retrotransposition intermediates in cultured human cells.
    Gilbert N; Lutz S; Morrish TA; Moran JV
    Mol Cell Biol; 2005 Sep; 25(17):7780-95. PubMed ID: 16107723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome.
    Sen SK; Huang CT; Han K; Batzer MA
    Nucleic Acids Res; 2007; 35(11):3741-51. PubMed ID: 17517773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion.
    Wimmer K; Callens T; Wernstedt A; Messiaen L
    PLoS Genet; 2011 Nov; 7(11):e1002371. PubMed ID: 22125493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3' end.
    Chaboissier MC; Finnegan D; Bucheton A
    Nucleic Acids Res; 2000 Jul; 28(13):2467-72. PubMed ID: 10871395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal priming: an opportunistic pathway for L1 and Alu retrotransposition in hominins.
    Srikanta D; Sen SK; Conlin EM; Batzer MA
    Gene; 2009 Dec; 448(2):233-41. PubMed ID: 19501635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of target site specificity by swapping the endonuclease domains of two LINEs.
    Takahashi H; Fujiwara H
    EMBO J; 2002 Feb; 21(3):408-17. PubMed ID: 11823433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition.
    Suzuki J; Yamaguchi K; Kajikawa M; Ichiyanagi K; Adachi N; Koyama H; Takeda S; Okada N
    PLoS Genet; 2009 Apr; 5(4):e1000461. PubMed ID: 19390601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biology of mammalian L1 retrotransposons.
    Ostertag EM; Kazazian HH
    Annu Rev Genet; 2001; 35():501-38. PubMed ID: 11700292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.
    Monot C; Kuciak M; Viollet S; Mir AA; Gabus C; Darlix JL; Cristofari G
    PLoS Genet; 2013 May; 9(5):e1003499. PubMed ID: 23675310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1.
    Anzai T; Takahashi H; Fujiwara H
    Mol Cell Biol; 2001 Jan; 21(1):100-8. PubMed ID: 11113185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune signatures correlate with L1 retrotransposition in gastrointestinal cancers.
    Jung H; Choi JK; Lee EA
    Genome Res; 2018 Aug; 28(8):1136-1146. PubMed ID: 29970450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic deletions created upon LINE-1 retrotransposition.
    Gilbert N; Lutz-Prigge S; Moran JV
    Cell; 2002 Aug; 110(3):315-25. PubMed ID: 12176319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.