These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 17344880)
21. Affinity proteomics: the role of specific binding reagents in human proteome analysis. Stoevesandt O; Taussig MJ Expert Rev Proteomics; 2012 Aug; 9(4):401-14. PubMed ID: 22967077 [TBL] [Abstract][Full Text] [Related]
22. On-the-fly targeted selection of labeled peptides in liquid chromatography/mass spectrometry based quantitative proteomics. Barbu IM; Smith DF; van Breukelen B; van der Burgt YE; Duursma MC; Heck AJ; Heeren RM; Krijgsveld J Rapid Commun Mass Spectrom; 2010 Jan; 24(2):239-41. PubMed ID: 20013948 [No Abstract] [Full Text] [Related]
23. An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides. Merrell K; Thulin CD; Esplin MS; Graves SW Rapid Commun Mass Spectrom; 2009 Sep; 23(17):2685-96. PubMed ID: 19630037 [TBL] [Abstract][Full Text] [Related]
24. Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Köcher T; Superti-Furga G Nat Methods; 2007 Oct; 4(10):807-15. PubMed ID: 17901870 [TBL] [Abstract][Full Text] [Related]
25. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Eriksson J; Fenyö D Nat Biotechnol; 2007 Jun; 25(6):651-5. PubMed ID: 17557102 [TBL] [Abstract][Full Text] [Related]
26. Determination of site-specificity of S-glutathionylated cellular proteins. Hamnell-Pamment Y; Lind C; Palmberg C; Bergman T; Cotgreave IA Biochem Biophys Res Commun; 2005 Jul; 332(2):362-9. PubMed ID: 15910747 [TBL] [Abstract][Full Text] [Related]
27. Towards multidimensional liquid chromatography separation of proteins using fluorescence and isotope-coded protein labelling for quantitative proteomics. Tribl F; Lohaus C; Dombert T; Langenfeld E; Piechura H; Warscheid B; Meyer HE; Marcus K Proteomics; 2008 Mar; 8(6):1204-11. PubMed ID: 18271069 [TBL] [Abstract][Full Text] [Related]
28. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline. Dowsey AW; Dunn MJ; Yang GZ Bioinformatics; 2008 Apr; 24(7):950-7. PubMed ID: 18310057 [TBL] [Abstract][Full Text] [Related]
29. Application of an improved proteomics method, fluorogenic derivatization-liquid chromatography-tandem mass spectrometry, to differential analysis of proteins in small regions of mouse brain. Asamoto H; Ichibangase T; Uchikura K; Imai K J Chromatogr A; 2008 Oct; 1208(1-2):147-55. PubMed ID: 18814880 [TBL] [Abstract][Full Text] [Related]
30. Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis. Blackburn K; Goshe MB Brief Funct Genomic Proteomic; 2009 Mar; 8(2):90-103. PubMed ID: 19109306 [TBL] [Abstract][Full Text] [Related]
31. Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting. Gertheiss J; Tutz G Bioinformatics; 2009 Apr; 25(8):1076-7. PubMed ID: 19233895 [TBL] [Abstract][Full Text] [Related]
32. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer. Saba J; Bonneil E; Pomiès C; Eng K; Thibault P J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569 [TBL] [Abstract][Full Text] [Related]
33. Advances in the analysis of protein phosphorylation. Paradela A; Albar JP J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898 [TBL] [Abstract][Full Text] [Related]
35. Mapping the lung proteome in cystic fibrosis. Gharib SA; Vaisar T; Aitken ML; Park DR; Heinecke JW; Fu X J Proteome Res; 2009 Jun; 8(6):3020-8. PubMed ID: 19354268 [TBL] [Abstract][Full Text] [Related]
36. 'Interactome' analysis: a step forward in proteomics research. Babu S Biotechnol J; 2010 Apr; 5(4):357-8. PubMed ID: 20349458 [No Abstract] [Full Text] [Related]
37. Analyzing proteomic expression in a clinical screening environment using mass spectrometry. Chace DH; Spitzer A Expert Rev Proteomics; 2005 Aug; 2(4):453-4. PubMed ID: 16097879 [No Abstract] [Full Text] [Related]
38. Isoform analysis of LC-MS/MS data from multidimensional fractionation of the serum proteome. Krasnoselsky AL; Faca VM; Pitteri SJ; Zhang Q; Hanash SM J Proteome Res; 2008 Jun; 7(6):2546-52. PubMed ID: 18419151 [TBL] [Abstract][Full Text] [Related]
39. Biomarker discovery for kidney diseases by mass spectrometry. Niwa T J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jul; 870(2):148-53. PubMed ID: 18024247 [TBL] [Abstract][Full Text] [Related]
40. Multiple products monitoring as a robust approach for peptide quantification. Baek JH; Kim H; Shin B; Yu MH J Proteome Res; 2009 Jul; 8(7):3625-32. PubMed ID: 19505066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]