These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17345013)

  • 21. A study of physicochemical characteristics of respirable dust in an Indian coal mine.
    Rawat NS
    Sci Total Environ; 1982 Apr; 23():47-54. PubMed ID: 7100908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fox guarding the chicken coop: monitoring exposure to respirable coal mine dust, 1969-2000.
    Weeks JL
    Am J Public Health; 2003 Aug; 93(8):1236-44. PubMed ID: 12893602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exposure to Harmful Dusts on Fully Powered Longwall Coal Mines in Poland.
    Brodny J; Tutak M
    Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30150562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Dust concentration analysis in non-coal mining. Exposure evaluation based on measurements performed by occupational hygiene laboratories in the years 2001-2005 in Poland].
    Bujak-Pietrek S; Mikołajczyk U; Szadkowska-Stańczyk I
    Med Pr; 2011; 62(2):113-25. PubMed ID: 21698871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Experimental assessment of coal and rock dust absorbing hazardous substances released from synthetic resins].
    Putilina ON
    Med Tr Prom Ekol; 1994; (2):11-3. PubMed ID: 7953131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tree responses to foliar dust deposition and gradient of air pollution around opencast coal mines of Jharia coalfield, India: gas exchange, antioxidative potential and tolerance level.
    Singh S; Pandey B; Roy LB; Shekhar S; Singh RK
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8637-8651. PubMed ID: 33067782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Field investigation to measure airflow velocities of a ram dump car using circular routing at a Midwestern underground coal mine: a case study.
    Reed WR; Shahan M; Ross G; Singh K; Cross R; Grounds T
    Environ Monit Assess; 2019 Jul; 191(8):515. PubMed ID: 31346812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.
    Jiang H; Luo Y; McQuerrey J
    J Occup Environ Hyg; 2018 Feb; 15(2):143-151. PubMed ID: 29157141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the SKC DPM cassette for monitoring diesel particulate matter in coal mines.
    Noll JD; Birch E
    J Environ Monit; 2004 Dec; 6(12):973-8. PubMed ID: 15568046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining the spatial variability of personal sampler inlet locations.
    Vinson R; Volkwein J; McWilliams L
    J Occup Environ Hyg; 2007 Sep; 4(9):708-14. PubMed ID: 17654226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quartz measurement in coal dust with high-flow rate samplers: laboratory study.
    Lee T; Lee EG; Kim SW; Chisholm WP; Kashon M; Harper M
    Ann Occup Hyg; 2012 May; 56(4):413-25. PubMed ID: 22186376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating portable infrared spectrometers for measuring the silica content of coal dust.
    Miller AL; Drake PL; Murphy NC; Noll JD; Volkwein JC
    J Environ Monit; 2012 Jan; 14(1):48-55. PubMed ID: 22130611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time trends and future prediction of coal worker's pneumoconiosis in opencast coal mine in China based on the APC model.
    Li Y; Xian W; Xu H; Sun J; Han B; Liu H
    BMC Public Health; 2018 Aug; 18(1):1010. PubMed ID: 30107832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site.
    Cauda E; Miller A; Drake P
    J Occup Environ Hyg; 2016; 13(3):D39-45. PubMed ID: 26558490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of respirable dust exposure among coal miners in South Africa.
    Naidoo R; Seixas N; Robins T
    J Occup Environ Hyg; 2006 Jun; 3(6):293-300. PubMed ID: 16621766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occupational exposure to respirable dust from the coal-fired power generation process: sources, concentration, and health risk assessment.
    Tong R; Liu J; Ma X; Yang Y; Shao G; Li J; Shi M
    Arch Environ Occup Health; 2020; 75(5):260-273. PubMed ID: 31210102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Respirable dust sampling in Czechoslovak coal mines.
    Vitek J
    Am Ind Hyg Assoc J; 1977 Jun; 38(6):247-52. PubMed ID: 878993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of non-carcinogenic health risk of heavy metal pollution: evidences from coal mining region of eastern India.
    Chakraborty B; Bera B; Roy SH; Adhikary PP; Sengupta D; Shit PK
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47275-47293. PubMed ID: 33891234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An evaluation of sharp cut cyclones for sampling diesel particulate matter aerosol in the presence of respirable dust.
    Cauda E; Sheehan M; Gussman R; Kenny L; Volkwein J
    Ann Occup Hyg; 2014 Oct; 58(8):995-1005. PubMed ID: 25060240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and monitoring of coal dust pollution in Wucaiwan mining area, Xinjiang (China) using Landsat derived enhanced coal dust index.
    Xia N; Hai W; Song G; Tang M
    PLoS One; 2022; 17(4):e0266517. PubMed ID: 35395022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.