These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 17345672)
1. Phylogenomic investigation of CR1 LINE diversity in reptiles. Shedlock AM Syst Biol; 2006 Dec; 55(6):902-11. PubMed ID: 17345672 [TBL] [Abstract][Full Text] [Related]
2. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Shedlock AM; Botka CW; Zhao S; Shetty J; Zhang T; Liu JS; Deschavanne PJ; Edwards SV Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2767-72. PubMed ID: 17307883 [TBL] [Abstract][Full Text] [Related]
3. Genome evolution in Reptilia: in silico chicken mapping of 12,000 BAC-end sequences from two reptiles and a basal bird. Chapus C; Edwards SV BMC Genomics; 2009 Jul; 10 Suppl 2(Suppl 2):S8. PubMed ID: 19607659 [TBL] [Abstract][Full Text] [Related]
4. Differential Conservation and Loss of Chicken Repeat 1 (CR1) Retrotransposons in Squamates Reveal Lineage-Specific Genome Dynamics Across Reptiles. Gable SM; Bushroe NA; Mendez JM; Wilson A; Pinto BJ; Gamble T; Tollis M Genome Biol Evol; 2024 Aug; 16(8):. PubMed ID: 39031594 [TBL] [Abstract][Full Text] [Related]
5. Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Suh A; Churakov G; Ramakodi MP; Platt RN; Jurka J; Kojima KK; Caballero J; Smit AF; Vliet KA; Hoffmann FG; Brosius J; Green RE; Braun EL; Ray DA; Schmitz J Genome Biol Evol; 2014 Dec; 7(1):205-17. PubMed ID: 25503085 [TBL] [Abstract][Full Text] [Related]
6. Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors. Vandergon TL; Reitman M Mol Biol Evol; 1994 Nov; 11(6):886-98. PubMed ID: 7815928 [TBL] [Abstract][Full Text] [Related]
7. A retrotransposon of the non-long terminal repeat class from the human blood fluke Schistosoma mansoni. Similarities to the chicken-repeat-1-like elements of vertebrates. Drew AC; Brindley PJ Mol Biol Evol; 1997 Jun; 14(6):602-10. PubMed ID: 9190061 [TBL] [Abstract][Full Text] [Related]
8. New resources inform study of genome size, content, and organization in nonavian reptiles. Janes DE; Organ C; Valenzuela N Integr Comp Biol; 2008 Oct; 48(4):447-53. PubMed ID: 21669805 [TBL] [Abstract][Full Text] [Related]
9. Genome evolution in Reptilia, the sister group of mammals. Janes DE; Organ CL; Fujita MK; Shedlock AM; Edwards SV Annu Rev Genomics Hum Genet; 2010; 11():239-64. PubMed ID: 20590429 [TBL] [Abstract][Full Text] [Related]
10. Transposable elements in reptilian and avian (sauropsida) genomes. Kordis D Cytogenet Genome Res; 2009; 127(2-4):94-111. PubMed ID: 20215725 [TBL] [Abstract][Full Text] [Related]
12. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor. Janes DE; Chapus C; Gondo Y; Clayton DF; Sinha S; Blatti CA; Organ CL; Fujita MK; Balakrishnan CN; Edwards SV Genome Biol Evol; 2011; 3():102-13. PubMed ID: 21183607 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. Lovsin N; Gubensek F; Kordi D Mol Biol Evol; 2001 Dec; 18(12):2213-24. PubMed ID: 11719571 [TBL] [Abstract][Full Text] [Related]
14. Multiple and Independent Phases of Transposable Element Amplification in the Genomes of Piciformes (Woodpeckers and Allies). Manthey JD; Moyle RG; Boissinot S Genome Biol Evol; 2018 Jun; 10(6):1445-1456. PubMed ID: 29850797 [TBL] [Abstract][Full Text] [Related]
15. From reptilian phylogenomics to reptilian genomes: analyses of c-Jun and DJ-1 proto-oncogenes. Katsu Y; Braun EL; Guillette LJ; Iguchi T Cytogenet Genome Res; 2009; 127(2-4):79-93. PubMed ID: 20234127 [TBL] [Abstract][Full Text] [Related]
16. A universal method for the study of CR1 retroposons in nonmodel bird genomes. Suh A; Kriegs JO; Donnellan S; Brosius J; Schmitz J Mol Biol Evol; 2012 Oct; 29(10):2899-903. PubMed ID: 22522308 [TBL] [Abstract][Full Text] [Related]
17. The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals. Novick PA; Basta H; Floumanhaft M; McClure MA; Boissinot S Mol Biol Evol; 2009 Aug; 26(8):1811-22. PubMed ID: 19420048 [TBL] [Abstract][Full Text] [Related]
18. A bacterial artificial chromosome library for the Australian saltwater crocodile (Crocodylus porosus) and its utilization in gene isolation and genome characterization. Shan X; Ray DA; Bunge JA; Peterson DG BMC Genomics; 2009 Jul; 10 Suppl 2(Suppl 2):S9. PubMed ID: 19607660 [TBL] [Abstract][Full Text] [Related]
19. Low diversity, activity, and density of transposable elements in five avian genomes. Gao B; Wang S; Wang Y; Shen D; Xue S; Chen C; Cui H; Song C Funct Integr Genomics; 2017 Jul; 17(4):427-439. PubMed ID: 28190211 [TBL] [Abstract][Full Text] [Related]
20. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Piskurek O; Nishihara H; Okada N Gene; 2009 Jul; 441(1-2):111-8. PubMed ID: 19118606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]