These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17346225)

  • 1. The ways of realization of high specificity and efficiency of enteropeptidase.
    Mikhailova AG; Likhareva VV; Teich N; Rumsh LD
    Protein Pept Lett; 2007; 14(3):227-32. PubMed ID: 17346225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [New substrates for enteropeptidase. I. Biologically active hepta-nonapeptides].
    Likhareva VV; Vas'kovskiĭ BV; Shepel' NE; Garanin SK; Mikhaĭlova AG; Rumsh LD
    Bioorg Khim; 2003; 29(2):129-34. PubMed ID: 12708312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hydrolysis by enteropeptidase of nonspecific (model) peptide sequences and possible physiological role of this phenomenon].
    Likhareva VV; Mikhaĭlova AG; Rumsh LD
    Vopr Med Khim; 2002; 48(6):561-9. PubMed ID: 12698555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of calcium ions on enteropeptidase catalysis.
    Mikhailova AG; Likhareva VV; Prudchenko IA; Rumsh LD
    Biochemistry (Mosc); 2005 Oct; 70(10):1129-35. PubMed ID: 16271029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide.
    Lu D; Fütterer K; Korolev S; Zheng X; Tan K; Waksman G; Sadler JE
    J Mol Biol; 1999 Sep; 292(2):361-73. PubMed ID: 10493881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting structural basis of the unique substrate selectivity of human enteropeptidase catalytic subunit.
    Ostapchenko VG; Gasparian ME; Kosinsky YA; Efremov RG; Dolgikh DA; Kirpichnikov MP
    J Biomol Struct Dyn; 2012; 30(1):62-73. PubMed ID: 22571433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain.
    Lu D; Yuan X; Zheng X; Sadler JE
    J Biol Chem; 1997 Dec; 272(50):31293-300. PubMed ID: 9395456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of secondary specificity of enteropeptidase in comparison with trypsin.
    Mikhailova AG; Likhareva VV; Vaskovsky BV; Garanin SK; Onoprienko LV; Prudchenko IA; Chikin LD; Rumsh LD
    Biochemistry (Mosc); 2004 Aug; 69(8):909-17. PubMed ID: 15377272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the specific activation of human enteropeptidase.
    Brodrick JW; Largman C; Hsiang MW; Johnson JH; Geokas MC
    J Biol Chem; 1978 Apr; 253(8):2737-42. PubMed ID: 564906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autolysis of bovine enteropeptidase heavy chain: evidence of fragment 118-465 involvement in trypsinogen activation.
    Mikhailova AG; Rumsh LD
    FEBS Lett; 1999 Jan; 442(2-3):226-30. PubMed ID: 9929006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy for improvement of enteropeptidase efficiency in tag removal processes.
    Gasparian ME; Bychkov ML; Dolgikh DA; Kirpichnikov MP
    Protein Expr Purif; 2011 Oct; 79(2):191-6. PubMed ID: 21515380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tetra-aspartate motif in the activation peptide of human cationic trypsinogen is essential for autoactivation control but not for enteropeptidase recognition.
    Nemoda Z; Sahin-Tóth M
    J Biol Chem; 2005 Aug; 280(33):29645-52. PubMed ID: 15970597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of trypsinogen activation peptides.
    Chen JM; Kukor Z; Le Maréchal C; Tóth M; Tsakiris L; Raguénès O; Férec C; Sahin-Tóth M
    Mol Biol Evol; 2003 Nov; 20(11):1767-77. PubMed ID: 12832630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity studies on enteropeptidase substrates related to the N-terminus of trypsinogen.
    Jenö P; Green JR; Lentze MJ
    Biochem J; 1987 Feb; 241(3):721-7. PubMed ID: 3297038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structural characteristics providing for high specificity of enteropeptidase].
    Mikhaĭlova AG; Rumsh LD
    Bioorg Khim; 1998 Apr; 24(4):282-7. PubMed ID: 9612570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield.
    Simeonov P; Berger-Hoffmann R; Hoffmann R; Sträter N; Zuchner T
    Protein Eng Des Sel; 2011 Mar; 24(3):261-8. PubMed ID: 21084283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of porcine enteropeptidase.
    Matsushima M; Ichinose M; Yahagi N; Kakei N; Tsukada S; Miki K; Kurokawa K; Tashiro K; Shiokawa K; Shinomiya K
    J Biol Chem; 1994 Aug; 269(31):19976-82. PubMed ID: 8051081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the catalytic and binding sites of porcine enteropeptidase.
    Baratti J; Maroux S
    Biochim Biophys Acta; 1976 Dec; 452(2):488-96. PubMed ID: 12810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A rate-limiting stage of enteropeptidase hydrolysis].
    Mikhaĭlova AG; Likhareva VV; Rumsh LD
    Bioorg Khim; 2008; 34(2):204-9. PubMed ID: 18522276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.