These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17346725)

  • 1. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.
    García-Sánchez P; Ramos A; Green NG; Morgan H
    Langmuir; 2008 Sep; 24(17):9361-9. PubMed ID: 18672919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients.
    García-Sánchez P; Ramos A; González A; Green NG; Morgan H
    Langmuir; 2009 May; 25(9):4988-97. PubMed ID: 19320476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pumping of electrolytes by electrical forces induced on the diffusion layer: A weakly nonlinear analysis.
    García-Sánchez P; Loucaides NG; Ramos A
    Phys Rev E; 2017 Feb; 95(2-1):022802. PubMed ID: 28297906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the combined action of Faradaic currents and mobility differences in ac electro-osmosis.
    González A; Ramos A; García-Sánchez P; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016320. PubMed ID: 20365473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes.
    Ramos A; González A; Castellanos A; Green NG; Morgan H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056302. PubMed ID: 12786267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow.
    Ng WY; Ramos A; Lam YC; Wijaya IP; Rodriguez I
    Lab Chip; 2011 Dec; 11(24):4241-7. PubMed ID: 22052533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traveling-wave dielectrophoresis of microparticles.
    Hagedorn R; Fuhr G; Müller T; Gimsa J
    Electrophoresis; 1992; 13(1-2):49-54. PubMed ID: 1587254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 May; 297(1):341-52. PubMed ID: 16289127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current.
    Ristenpart WD; Aksay IA; Saville DA
    Langmuir; 2007 Mar; 23(7):4071-80. PubMed ID: 17335253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of traveling-wave electro-osmotic pumping with double-sided electrode arrays.
    Yeh HC; Yang RJ; Luo WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056326. PubMed ID: 21728666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes.
    Brown AB; Smith CG; Rennie AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016305. PubMed ID: 11304351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 Aug; 300(1):413-28. PubMed ID: 16725151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of rectified lateral motion of particles near electrodes in alternating electric fields below 1 kHz.
    Fagan JA; Sides PJ; Prieve DC
    Langmuir; 2006 Nov; 22(24):9846-52. PubMed ID: 17106972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traveling wave electroosmosis: the influence of electrode array geometry.
    Hrdlička J; Patel NS; Snita D
    Electrophoresis; 2014 Jul; 35(12-13):1790-4. PubMed ID: 24723297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-convective versus electroosmotic instability in concentration polarization.
    Rubinstein I; Zaltzman B
    Adv Colloid Interface Sci; 2007 Oct; 134-135():190-200. PubMed ID: 17559786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An AC electroosmotic micropump for circular chromatographic applications.
    Debesset S; Hayden CJ; Dalton C; Eijkel JC; Manz A
    Lab Chip; 2004 Aug; 4(4):396-400. PubMed ID: 15269811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-osmotic streaming on application of traveling-wave electric fields.
    Cahill BP; Heyderman LJ; Gobrecht J; Stemmer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036305. PubMed ID: 15524631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-fluid electroosmotic flow in microchannels.
    Gao Y; Wong TN; Yang C; Ooi KT
    J Colloid Interface Sci; 2005 Apr; 284(1):306-14. PubMed ID: 15752818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.