These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 17346728)
21. Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions. Puibasset J J Chem Phys; 2007 Aug; 127(7):074702. PubMed ID: 17718622 [TBL] [Abstract][Full Text] [Related]
22. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment. Wongkoblap A; Do DD J Phys Chem B; 2007 Dec; 111(50):13949-56. PubMed ID: 18044864 [TBL] [Abstract][Full Text] [Related]
23. Density functional theory of adsorption in pillared slit-like pores. Sokołowska Z; Sokołowski S J Colloid Interface Sci; 2007 Dec; 316(2):652-9. PubMed ID: 17904568 [TBL] [Abstract][Full Text] [Related]
24. Simulated water adsorption in chemically heterogeneous carbon nanotubes. Striolo A; Chialvo AA; Cummings PT; Gubbins KE J Chem Phys; 2006 Feb; 124(7):74710. PubMed ID: 16497073 [TBL] [Abstract][Full Text] [Related]
25. Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study. Do DD; Do HD J Chem Phys; 2005 Aug; 123(8):084701. PubMed ID: 16164315 [TBL] [Abstract][Full Text] [Related]
26. Canonical Monte Carlo simulation of adsorption of O2 and N2 mixture on single walled carbon nanotube at different temperatures and pressures. Rafati AA; Hashemianzadeh SM; Nojini ZB; Naghshineh N J Comput Chem; 2010 May; 31(7):1443-9. PubMed ID: 20082390 [TBL] [Abstract][Full Text] [Related]
27. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. Coasne B; Pellenq RJ J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439 [TBL] [Abstract][Full Text] [Related]
28. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption. Do DD; Do HD; Nicholson D J Phys Chem B; 2009 Jan; 113(4):1030-40. PubMed ID: 19127983 [TBL] [Abstract][Full Text] [Related]
29. Direct measurements of pore fluid density by vibrating tube densimetry. Gruszkiewicz MS; Rother G; Wesolowski DJ; Cole DR; Wallacher D Langmuir; 2012 Mar; 28(11):5070-8. PubMed ID: 22369098 [TBL] [Abstract][Full Text] [Related]
30. Nitrogen and water adsorption in aluminum methylphosphonate alpha: a molecular simulation study. Herdes C; Lin Z; Valente A; Coutinho JA; Vega LF Langmuir; 2006 Mar; 22(7):3097-104. PubMed ID: 16548563 [TBL] [Abstract][Full Text] [Related]
31. Structure of Lennard-Jones fluids confined in square nanoscale channels from density functional theory. Yang X; Ding J J Chem Phys; 2004 Oct; 121(15):7449-56. PubMed ID: 15473819 [TBL] [Abstract][Full Text] [Related]
32. Adsorption of Fluids in Pores Formed between Two Hard Cylinders. Bryk P; Lajtar L; Pizio O; Sokolowska Z; Sokolowski S J Colloid Interface Sci; 2000 Sep; 229(2):526-533. PubMed ID: 10985831 [TBL] [Abstract][Full Text] [Related]
33. Capillary condensation in a geometrically and a chemically heterogeneous pore: a molecular simulation study. Puibasset J J Phys Chem B; 2005 Mar; 109(10):4700-6. PubMed ID: 16851551 [TBL] [Abstract][Full Text] [Related]
34. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size. Puibasset J J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818 [TBL] [Abstract][Full Text] [Related]
35. Pore size distribution analysis of selected hexagonal mesoporous silicas by grand canonical Monte Carlo simulations. Herdes C; Santos MA; Medina F; Vega LF Langmuir; 2005 Sep; 21(19):8733-42. PubMed ID: 16142955 [TBL] [Abstract][Full Text] [Related]
36. Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system. Ramsahye NA; Maurin G; Bourrelly S; Llewellyn P; Loiseau T; Ferey G Phys Chem Chem Phys; 2007 Mar; 9(9):1059-63. PubMed ID: 17311147 [TBL] [Abstract][Full Text] [Related]
37. Some remarks on the calculation of the pore size distribution function of activated carbons. Gauden PA; Terzyk AP; Kowalczyk P J Colloid Interface Sci; 2006 Aug; 300(2):453-74. PubMed ID: 16690070 [TBL] [Abstract][Full Text] [Related]
38. Dielectric constant and density dependence of the structure of supercritical carbon dioxide using a new modified empirical potential model: a Monte Carlo simulation study. Zhang Y; Yang J; Yu YX J Phys Chem B; 2005 Jul; 109(27):13375-82. PubMed ID: 16852670 [TBL] [Abstract][Full Text] [Related]
39. Development of Composite Adsorbents of Carbon and Intercalated Clay for N2 and O2 Adsorption: A Preliminary Study. Zhu HY; Vansant EF; Lu GQ J Colloid Interface Sci; 1999 Feb; 210(2):352-359. PubMed ID: 9929422 [TBL] [Abstract][Full Text] [Related]
40. Distribution of carbon nanotube sizes from adsorption measurements and computer simulation. Kowalczyk P; Hołyst R; Tanaka H; Kaneko K J Phys Chem B; 2005 Aug; 109(30):14659-66. PubMed ID: 16852850 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]