These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17347019)

  • 21. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species.
    Joyce E; Phull SS; Lorimer JP; Mason TJ
    Ultrason Sonochem; 2003 Oct; 10(6):315-8. PubMed ID: 12927605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of a peak in cavitation activity from HIFU exposures using TA fluorescence.
    Zhu C; He S; Shan M; Chen J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e349-51. PubMed ID: 16945397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison between the effect of low-level laser therapy and low-intensity pulsed ultrasonic irradiation in vitro.
    De Oliveira RF; Oliveira DA; Monteiro W; Zangaro RA; Magini M; Soares CP
    Photomed Laser Surg; 2008 Feb; 26(1):6-9. PubMed ID: 18248154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of acoustic cavitation bubbles in different sound fields.
    Brotchie A; Grieser F; Ashokkumar M
    J Phys Chem B; 2010 Sep; 114(34):11010-6. PubMed ID: 20698516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promoting inertial cavitation by nonlinear frequency mixing in a bifrequency focused ultrasound beam.
    Saletes I; Gilles B; Bera JC
    Ultrasonics; 2011 Jan; 51(1):94-101. PubMed ID: 20637485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of ultrasound operating parameters on ultrasound-induced thrombolysis in vitro.
    Schäfer S; Kliner S; Klinghammer L; Kaarmann H; Lucic I; Nixdorff U; Rosenschein U; Daniel WG; Flachskampf FA
    Ultrasound Med Biol; 2005 Jun; 31(6):841-7. PubMed ID: 15936499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors.
    Kirpalani DM; McQuinn KJ
    Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-energy ultrasound exposure of the streptokinase molecule may enhance but also attenuate its fibrinolytic properties.
    Härdig BM; Persson HW; Olsson SB
    Thromb Res; 2006; 117(6):713-20. PubMed ID: 15993473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relation between cavitation and platelet aggregation during exposure to high-intensity focused ultrasound.
    Poliachik SL; Chandler WL; Ollos RJ; Bailey MR; Crum LA
    Ultrasound Med Biol; 2004 Feb; 30(2):261-9. PubMed ID: 14998678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic droplet vaporization and inertial cavitation thresholds and efficiencies of nanodroplets emulsions inside the focused region using a dual-frequency ring focused ultrasound.
    Xu S; Chang N; Wang R; Liu X; Guo S; Wang S; Zong Y; Wan M
    Ultrason Sonochem; 2018 Nov; 48():532-537. PubMed ID: 30080582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.
    Liu HL; Hsieh CM
    Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity.
    McDannold N; Vykhodtseva N; Hynynen K
    Phys Med Biol; 2006 Feb; 51(4):793-807. PubMed ID: 16467579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions between consecutive sonications for characterizing the thermal mechanism in focused ultrasound therapy.
    Liu HL; Chen YY; Chen WS; Shih TC; Chen JS; Lin WL
    Ultrasound Med Biol; 2006 Sep; 32(9):1411-21. PubMed ID: 16965981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors.
    Servant G; Laborde JL; Hita A; Caltagirone JP; Gérard A
    Ultrason Sonochem; 2003 Oct; 10(6):347-55. PubMed ID: 12927611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of heat shock proteins after ultrasound exposure in HL-60 cells.
    Sontag W; Kruglikov IL
    Ultrasound Med Biol; 2009 Jun; 35(6):1032-41. PubMed ID: 19285782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intravascular inertial cavitation activity detection and quantification in vivo with Optison.
    Tu J; Hwang JH; Matula TJ; Brayman AA; Crum LA
    Ultrasound Med Biol; 2006 Oct; 32(10):1601-9. PubMed ID: 17045881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inertial cavitation dose produced in ex vivo rabbit ear arteries with Optison by 1-MHz pulsed ultrasound.
    Tu J; Matula TJ; Brayman AA; Crum LA
    Ultrasound Med Biol; 2006 Feb; 32(2):281-8. PubMed ID: 16464673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the effects of pulsed ultrasound at 205 and 616 kHz on the sonochemical degradation of octylbenzene sulfonate.
    Deojay DM; Sostaric JZ; Weavers LK
    Ultrason Sonochem; 2011 May; 18(3):801-9. PubMed ID: 21078564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study on generating hydroxyl radicals by single and two-frequency ultrasound with gold nanoparticles and protoporphyrin IX.
    Tabatabaei ZS; Rajabi O; Nassirli H; Vejdani Noghreiyan A; Sazgarnia A
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):1039-1047. PubMed ID: 31617155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.