These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 17347441)

  • 21. Phase-dependent effects of spinal cord stimulation on locomotor activity.
    Vogelstein RJ; Etienne-Cummings R; Thakor NV; Cohen AH
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):257-65. PubMed ID: 17009484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and neuromodulation of spinal locomotor networks in the metamorphosing frog.
    Rauscent A; Le Ray D; Cabirol-Pol MJ; Sillar KT; Simmers J; Combes D
    J Physiol Paris; 2006; 100(5-6):317-27. PubMed ID: 17629683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Where are we in understanding salamander locomotion: biological and robotic perspectives on kinematics.
    Karakasiliotis K; Schilling N; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):529-44. PubMed ID: 23250621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The control system for the Honda humanoid robot.
    Takenaka T
    Age Ageing; 2006 Sep; 35 Suppl 2():ii24-ii26. PubMed ID: 16926199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of rhythmic patterns produced by spinal neural networks.
    Mor Y; Lev-Tov A
    J Neurophysiol; 2007 Nov; 98(5):2807-17. PubMed ID: 17715187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation.
    Guevremont L; Renzi CG; Norton JA; Kowalczewski J; Saigal R; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):266-72. PubMed ID: 17009485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.
    Karakasiliotis K; Thandiackal R; Melo K; Horvat T; Mahabadi NK; Tsitkov S; Cabelguen JM; Ijspeert AJ
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27358276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating behavioral and neural data in a model of zebrafish network interaction.
    Kuo PD; Eliasmith C
    Biol Cybern; 2005 Sep; 93(3):178-87. PubMed ID: 16136350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscarinic control of the excitability of hindlimb motoneurons in chronic spinal-transected salamanders.
    Chevallier S; Nagy F; Cabelguen JM
    Eur J Neurosci; 2008 Dec; 28(11):2243-53. PubMed ID: 19019203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The motor system plays the violin: a musical metaphor inferred from the oscillatory activity of the α-motoneuron pools during locomotion.
    Chiovetto E
    J Neurophysiol; 2011 Apr; 105(4):1429-31. PubMed ID: 21273310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.
    Ivanenko YP; Cappellini G; Poppele RE; Lacquaniti F
    Eur J Neurosci; 2008 Jun; 27(12):3351-68. PubMed ID: 18598271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Swimming of larval zebrafish: fin-axis coordination and implications for function and neural control.
    Thorsen DH; Cassidy JJ; Hale ME
    J Exp Biol; 2004 Nov; 207(Pt 24):4175-83. PubMed ID: 15531638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N; Nozaki D; Abe MO; Nakazawa K
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamical dimension of a hybrid neurorobotic system.
    Kositsky M; Karniel A; Alford S; Fleming KM; Mussa-Ivaldi FA
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):155-9. PubMed ID: 12899261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic stability and phase resetting during biped gait.
    Nomura T; Kawa K; Suzuki Y; Nakanishi M; Yamasaki T
    Chaos; 2009 Jun; 19(2):026103. PubMed ID: 19566263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Explaining patterns of neural activity in the primary motor cortex using spinal cord and limb biomechanics models.
    Trainin E; Meir R; Karniel A
    J Neurophysiol; 2007 May; 97(5):3736-50. PubMed ID: 17360816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peeling back the layers of locomotor control in the spinal cord.
    McLean DL; Dougherty KJ
    Curr Opin Neurobiol; 2015 Aug; 33():63-70. PubMed ID: 25820136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.
    Beyeler A; Métais C; Combes D; Simmers J; Le Ray D
    J Neurophysiol; 2008 Sep; 100(3):1372-83. PubMed ID: 18596184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.