BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 17347520)

  • 1. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations.
    Koga Y; Morii H
    Microbiol Mol Biol Rev; 2007 Mar; 71(1):97-120. PubMed ID: 17347520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins and evolution of isoprenoid lipid biosynthesis in archaea.
    Boucher Y; Kamekura M; Doolittle WF
    Mol Microbiol; 2004 Apr; 52(2):515-27. PubMed ID: 15066037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.
    Caforio A; Jain S; Fodran P; Siliakus M; Minnaard AJ; van der Oost J; Driessen AJ
    Biochem J; 2015 Sep; 470(3):343-55. PubMed ID: 26195826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenomic investigation of phospholipid synthesis in archaea.
    Lombard J; López-García P; Moreira D
    Archaea; 2012; 2012():630910. PubMed ID: 23304072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From promiscuity to the lipid divide: on the evolution of distinct membranes in Archaea and Bacteria.
    Koga Y
    J Mol Evol; 2014 Apr; 78(3-4):234-42. PubMed ID: 24573438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea.
    Jain S; Caforio A; Fodran P; Lolkema JS; Minnaard AJ; Driessen AJM
    Chem Biol; 2014 Oct; 21(10):1392-1401. PubMed ID: 25219966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sn-glycerol-1-phosphate dehydrogenase in Methanobacterium thermoautotrophicum: key enzyme in biosynthesis of the enantiomeric glycerophosphate backbone of ether phospholipids of archaebacteria.
    Nishihara M; Koga Y
    J Biochem; 1995 May; 117(5):933-5. PubMed ID: 8586635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancestral lipid biosynthesis and early membrane evolution.
    Peretó J; López-García P; Moreira D
    Trends Biochem Sci; 2004 Sep; 29(9):469-77. PubMed ID: 15337120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent.
    Koga Y; Kyuragi T; Nishihara M; Sone N
    J Mol Evol; 1998 Jan; 46(1):54-63. PubMed ID: 9419225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early evolution of membrane lipids: how did the lipid divide occur?
    Koga Y
    J Mol Evol; 2011 Mar; 72(3):274-82. PubMed ID: 21259003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of archaeal membrane ether lipids.
    Jain S; Caforio A; Driessen AJ
    Front Microbiol; 2014; 5():641. PubMed ID: 25505460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of sn-glycerol-1-phosphate dehydrogenase from Methanobacterium thermoautotrophicum: characterization of the biosynthetic enzyme for the enantiomeric glycerophosphate backbone of ether polar lipids of Archaea.
    Nishihara M; Koga Y
    J Biochem; 1997 Sep; 122(3):572-6. PubMed ID: 9348086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells.
    Morii H; Kiyonari S; Ishino Y; Koga Y
    J Biol Chem; 2009 Nov; 284(45):30766-74. PubMed ID: 19740749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeal phospholipids: Structural properties and biosynthesis.
    Caforio A; Driessen AJM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1325-1339. PubMed ID: 28007654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase.
    Carbone V; Schofield LR; Zhang Y; Sang C; Dey D; Hannus IM; Martin WF; Sutherland-Smith AJ; Ronimus RS
    J Biol Chem; 2015 Aug; 290(35):21690-704. PubMed ID: 26175150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids.
    Yokobori SI; Nakajima Y; Akanuma S; Yamagishi A
    Archaea; 2016; 2016():1802675. PubMed ID: 27774041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition.
    Daiyasu H; Kuma K; Yokoi T; Morii H; Koga Y; Toh H
    Archaea; 2005 Dec; 1(6):399-410. PubMed ID: 16243780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitous distribution of phosphatidylinositol phosphate synthase and archaetidylinositol phosphate synthase in Bacteria and Archaea, which contain inositol phospholipid.
    Morii H; Ogawa M; Fukuda K; Taniguchi H
    Biochem Biophys Res Commun; 2014 Jan; 443(1):86-90. PubMed ID: 24269814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway.
    Smit A; Mushegian A
    Genome Res; 2000 Oct; 10(10):1468-84. PubMed ID: 11042147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of membrane stereochemistry with homology modeling of sn-glycerol-1-phosphate dehydrogenase.
    Daiyasu H; Hiroike T; Koga Y; Toh H
    Protein Eng; 2002 Dec; 15(12):987-95. PubMed ID: 12601138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.