These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17347741)

  • 1. Application of the Ramanujan Fourier Transform for the analysis of secondary structure content in amino acid sequences.
    Mainardi LT; Pattini L; Cerutti S
    Methods Inf Med; 2007; 46(2):126-9. PubMed ID: 17347741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
    Zhao J; Wang J; Hua W; Ouyang P
    Mol Cell Probes; 2015 Dec; 29(6):396-407. PubMed ID: 26325081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Periodicities in Eukaryotic Genomes by Ramanujan Fourier Transform.
    Zhao J; Wang J; Jiang H
    J Comput Biol; 2018 Sep; 25(9):963-975. PubMed ID: 29963923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for comparative analysis of DNA sequences by Ramanujan-Fourier transform.
    Yin C; Yin XE; Wang J
    J Comput Biol; 2014 Dec; 21(12):867-79. PubMed ID: 25302665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot spots localization in proteins by optimized short time Ramanujan Fourier transform.
    Yadav Y; Sharma SN; Shakya DK; Panchal A
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150004. PubMed ID: 33819134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks.
    Shepherd AJ; Gorse D; Thornton JM
    Proteins; 2003 Feb; 50(2):290-302. PubMed ID: 12486723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.
    Hua W; Wang J; Zhao J
    Mol Cell Probes; 2014; 28(5-6):228-36. PubMed ID: 24787059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Tandem Repeats in DNA Sequences Using Short-Time Ramanujan Fourier Transform.
    Yadav Y; Sharma SN; Shakya DK
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1583-1591. PubMed ID: 33493119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins.
    West MW; Hecht MH
    Protein Sci; 1995 Oct; 4(10):2032-9. PubMed ID: 8535239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid detection of conserved regions in protein sequences using wavelets.
    Krishnan A; Li KB; Issac P
    In Silico Biol; 2004; 4(2):133-48. PubMed ID: 15107019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of protein secondary structures via the discrete wavelet transform.
    Pando J; Sands L; Shaheen SE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051909. PubMed ID: 20365008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ramanujan sums for signal processing of low-frequency noise.
    Planat M; Rosu H; Perrine S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056128. PubMed ID: 12513577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier-based classification of protein secondary structures.
    Shu JJ; Yong KY
    Biochem Biophys Res Commun; 2017 Apr; 485(4):731-735. PubMed ID: 28246013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions.
    Perkins SJ; Smith KF; Williams SC; Haris PI; Chapman D; Sim RB
    J Mol Biol; 1994 Apr; 238(1):104-19. PubMed ID: 8145250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and sequence characteristics of long alpha helices in globular proteins.
    Kumar S; Bansal M
    Biophys J; 1996 Sep; 71(3):1574-86. PubMed ID: 8874031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobicity analysis of protein primary structures to identify helical regions.
    Pattini L; Cerutti S
    Methods Inf Med; 2004; 43(1):102-5. PubMed ID: 15026848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized analysis of hydrophobic and loop clusters within globular protein sequences.
    Eudes R; Le Tuan K; Delettré J; Mornon JP; Callebaut I
    BMC Struct Biol; 2007 Jan; 7():2. PubMed ID: 17210072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein secondary structure content for the twilight zone sequences.
    Homaeian L; Kurgan LA; Ruan J; Cios KJ; Chen K
    Proteins; 2007 Nov; 69(3):486-98. PubMed ID: 17623861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.