These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17347824)

  • 1. Molecular dynamics study of the initial stages of catalyzed single-wall carbon nanotubes growth: force field development.
    Martinez-Limia A; Zhao J; Balbuena PB
    J Mol Model; 2007 May; 13(5):595-600. PubMed ID: 17347824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide.
    Scott CD; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):75-9. PubMed ID: 12908232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial evolutions of Co and Ni atoms during single-walled carbon nanotubes formation: measurements and modeling.
    Cau M; Dorval N; Cao B; Attal-Trétout B; Cochon JL; Loiseau A; Farhat S; Scott CD
    J Nanosci Nanotechnol; 2006 May; 6(5):1298-308. PubMed ID: 16792356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-electron DFT modeling of SWCNT growth on iron catalysts from carbon monoxide feedstock.
    Gutsev GL; Mochena MD; Bauschlicher CW
    J Nanosci Nanotechnol; 2006 May; 6(5):1281-9. PubMed ID: 16792354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Ni:SiO2 nanocomposite to control the carbon deposition on the carbon dioxide reforming of methane.
    Carreño NL; Leite ER; Longo E; Lisboa-Filho PN; Valentini A; Probst LF; Schreiner WH
    J Nanosci Nanotechnol; 2002 Oct; 2(5):491-4. PubMed ID: 12908285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis.
    Gökçen T; Dateo CE; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):535-44. PubMed ID: 12908292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced binding strength between metal nanoclusters and carbon nanotubes with an atomic nickel defect.
    Sung D; Park N; Kim G; Hong S
    Nanotechnology; 2012 May; 23(20):205204. PubMed ID: 22544038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in single-walled carbon nanotube chirality during growth and regrowth.
    Zhu W; Rosén A; Bolton K
    J Chem Phys; 2008 Mar; 128(12):124708. PubMed ID: 18376961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ growth of carbon nanotubes on Ni/MgO: a facile preparation of efficient catalysts for the production of synthetic natural gas from syngas.
    Fan MT; Lin JD; Zhang HB; Liao DW
    Chem Commun (Camb); 2015 Nov; 51(86):15720-3. PubMed ID: 26365211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes.
    Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA
    J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.
    Scott CD; Povitsky A; Dateo C; Gökçen T; Willis PA; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):63-73. PubMed ID: 12908231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics.
    Dateo CE; Gökçen T; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):523-34. PubMed ID: 12908291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe/C interactions during SWNT growth with C2 feedstock molecules: A quantum chemical molecular dynamics study.
    Zheng G; Irle S; Morokuma K
    J Nanosci Nanotechnol; 2006 May; 6(5):1259-70. PubMed ID: 16792352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic simulations of catalyzed carbon nanotube growth.
    Bolton K; Ding F; Rosén A
    J Nanosci Nanotechnol; 2006 May; 6(5):1211-24. PubMed ID: 16792348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water.
    Aoi S; Mase K; Ohkubo K; Fukuzumi S
    Chem Commun (Camb); 2015 Jun; 51(50):10226-8. PubMed ID: 26021853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the catalyst in the growth of single-wall carbon nanotubes.
    Balbuena PB; Zhao J; Huang S; Wang Y; Sakulchaicharoen N; Resasco DE
    J Nanosci Nanotechnol; 2006 May; 6(5):1247-58. PubMed ID: 16792351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical insights into the nature of nickel-carbon dioxide interactions in Ni(PH3)2(η2-CO2).
    Kégl T; Ponec R; Kollár L
    J Phys Chem A; 2011 Nov; 115(45):12463-73. PubMed ID: 21449600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of carbon nanotubes at low powers by impedance-matched microwave plasma enhanced chemical vapor deposition method.
    Chen SY; Chang LW; Peng CW; Miao HY; Lue JT
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1887-92. PubMed ID: 16433426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of molecular dynamics simulations for structural studies of carbon nanotubes.
    Bródka A; Kołoczek J; Burian A
    J Nanosci Nanotechnol; 2007; 7(4-5):1505-11. PubMed ID: 17450918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.