BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17348012)

  • 1. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.
    Nguyen PH
    Proteins; 2007 May; 67(3):579-92. PubMed ID: 17348012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy landscape of a small peptide revealed by dihedral angle principal component analysis.
    Mu Y; Nguyen PH; Stock G
    Proteins; 2005 Jan; 58(1):45-52. PubMed ID: 15521057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
    Nguyen PH
    Proteins; 2006 Dec; 65(4):898-913. PubMed ID: 17034036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
    Papaleo E; Mereghetti P; Fantucci P; Grandori R; De Gioia L
    J Mol Graph Model; 2009; 27(8):889-99. PubMed ID: 19264523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics of large-ring cyclodextrins: principal component analysis of the conformational interconversions.
    Gotsev MG; Ivanov PM
    J Phys Chem B; 2009 Apr; 113(17):5752-9. PubMed ID: 19344106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective Langevin dynamics of conformational motions in proteins.
    Lange OF; Grubmüller H
    J Chem Phys; 2006 Jun; 124(21):214903. PubMed ID: 16774438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can principal components yield a dimension reduced description of protein dynamics on long time scales?
    Lange OF; Grubmüller H
    J Phys Chem B; 2006 Nov; 110(45):22842-52. PubMed ID: 17092036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihedral angle principal component analysis of molecular dynamics simulations.
    Altis A; Nguyen PH; Hegger R; Stock G
    J Chem Phys; 2007 Jun; 126(24):244111. PubMed ID: 17614541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.
    Maisuradze GG; Leitner DM
    Proteins; 2007 May; 67(3):569-78. PubMed ID: 17348026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on: "Energy landscape of a small peptide revealed by dihedral angle principal component analysis".
    Hinsen K
    Proteins; 2006 Aug; 64(3):795-7; discussion 798-9. PubMed ID: 16456860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis.
    Altis A; Otten M; Nguyen PH; Hegger R; Stock G
    J Chem Phys; 2008 Jun; 128(24):245102. PubMed ID: 18601386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2009; 27(8):871-80. PubMed ID: 19223214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A geometric invariant-based framework for the analysis of protein conformational space.
    Tendulkar AV; Sohoni MA; Ogunnaike B; Wangikar PP
    Bioinformatics; 2005 Sep; 21(18):3622-8. PubMed ID: 16096349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using free energy perturbation to predict effects of changing force field parameters on computed conformational equilibriums of peptides.
    Cao Z; Liu H
    J Chem Phys; 2008 Jul; 129(1):015101. PubMed ID: 18624500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple loop conformations of peptides predicted by molecular dynamics simulations are compatible with nuclear magnetic resonance.
    Carstens H; Renner C; Milbradt AG; Moroder L; Tavan P
    Biochemistry; 2005 Mar; 44(12):4829-40. PubMed ID: 15779909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complex folding pathways of protein A suggest a multiple-funnelled energy landscape.
    St-Pierre JF; Mousseau N; Derreumaux P
    J Chem Phys; 2008 Jan; 128(4):045101. PubMed ID: 18248008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.
    Sullivan DC; Lim C
    J Phys Chem B; 2006 Aug; 110(33):16707-17. PubMed ID: 16913810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal component analysis for protein folding dynamics.
    Maisuradze GG; Liwo A; Scheraga HA
    J Mol Biol; 2009 Jan; 385(1):312-29. PubMed ID: 18952103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides.
    Engin O; Sayar M; Erman B
    Phys Biol; 2009 Jan; 6(1):016001. PubMed ID: 19141876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energy landscape of unsolvated peptides: the role of context in the stability of alanine/glycine helices.
    Hartings MR; Kinnear BS; Jarrold MF
    J Am Chem Soc; 2003 Apr; 125(13):3941-7. PubMed ID: 12656629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.