These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 17348512)
1. Acoustoelastic analysis of reflected waves in nearly incompressible, hyper-elastic materials: forward and inverse problems. Kobayashi H; Vanderby R J Acoust Soc Am; 2007 Feb; 121(2):879-87. PubMed ID: 17348512 [TBL] [Abstract][Full Text] [Related]
2. Large acoustoelastic effect for Lamb waves propagating in an incompressible elastic plate. Mohabuth M; Kotousov A; Ng CT J Acoust Soc Am; 2019 Mar; 145(3):1221. PubMed ID: 31067922 [TBL] [Abstract][Full Text] [Related]
3. On the third- and fourth-order constants of incompressible isotropic elasticity. Destrade M; Ogden RW J Acoust Soc Am; 2010 Dec; 128(6):3334-43. PubMed ID: 21218867 [TBL] [Abstract][Full Text] [Related]
4. On the determination of the third-order elastic constants of homogeneous isotropic materials utilising Rayleigh waves. Mohabuth M; Khanna A; Hughes J; Vidler J; Kotousov A; Ng CT Ultrasonics; 2019 Jul; 96():96-103. PubMed ID: 30833179 [TBL] [Abstract][Full Text] [Related]
5. Reflection and transmission of thermo-elastic waves without energy dissipation at the interface of two dipolar gradient elastic solids. Li Y; Wei P J Acoust Soc Am; 2018 Jan; 143(1):550. PubMed ID: 29390773 [TBL] [Abstract][Full Text] [Related]
6. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves. Dodson JC; Inman DJ J Acoust Soc Am; 2014 Nov; 136(5):2532-43. PubMed ID: 25373955 [TBL] [Abstract][Full Text] [Related]
7. Poro-acoustoelastic constants based on Padé approximation. Fu BY; Fu LY J Acoust Soc Am; 2017 Nov; 142(5):2890. PubMed ID: 29195418 [TBL] [Abstract][Full Text] [Related]
8. Thermo-acoustoelastic effect of Rayleigh wave: Theory and experimental verification. Zeng S; Zhu J; Zhong B; Li X Ultrasonics; 2023 May; 131():106948. PubMed ID: 36780767 [TBL] [Abstract][Full Text] [Related]
9. Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: an alternative to static strain. Ellwood R; Stratoudaki T; Sharples SD; Clark M; Somekh MG J Acoust Soc Am; 2014 Mar; 135(3):1064-70. PubMed ID: 24606250 [TBL] [Abstract][Full Text] [Related]
10. A generalized Ogden model for the compressibility of rubber-like solids. Yao Y; Chen S; Huang Z Philos Trans A Math Phys Eng Sci; 2022 Oct; 380(2234):20210320. PubMed ID: 36031837 [TBL] [Abstract][Full Text] [Related]
11. A refined dynamic finite-strain shell theory for incompressible hyperelastic materials: equations and two-dimensional shell virtual work principle. Yu X; Fu Y; Dai HH Proc Math Phys Eng Sci; 2020 May; 476(2237):20200031. PubMed ID: 32523417 [TBL] [Abstract][Full Text] [Related]
12. A unifying model of weakly nonlinear elastic waves; large on large theory. Kube CM; Roy A; Jensen DS; Branch DW J Acoust Soc Am; 2022 Feb; 151(2):1294. PubMed ID: 35232066 [TBL] [Abstract][Full Text] [Related]
13. Total transmission of incident plane waves that satisfy the Brewster conditions at a free-space-chiral interface. Bahar E J Opt Soc Am A Opt Image Sci Vis; 2010 Sep; 27(9):2055-60. PubMed ID: 20808416 [TBL] [Abstract][Full Text] [Related]
14. On Rayleigh waves in incompressible orthotropic elastic solids. Ogden RW; Vinh PC J Acoust Soc Am; 2004 Feb; 115(2):530-3. PubMed ID: 15000166 [TBL] [Abstract][Full Text] [Related]
15. Using wave intensity analysis to determine local reflection coefficient in flexible tubes. Li Y; Parker KH; Khir AW J Biomech; 2016 Sep; 49(13):2709-2717. PubMed ID: 27370783 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear dynamics of a gas bubble in an incompressible elastic medium. Emelianov SY; Hamilton MF; Ilinskii YA; Zabolotskaya EA J Acoust Soc Am; 2004 Feb; 115(2):581-8. PubMed ID: 15000170 [TBL] [Abstract][Full Text] [Related]
17. Identification of the mechanical moduli of flexible thermoplastic thin films using reflected ultrasonic waves: Inverse problem. Lazri H; Ogam E; Amar B; Fellah ZEA; Oduor AO; Baki P Ultrasonics; 2017 Nov; 81():10-22. PubMed ID: 28570856 [TBL] [Abstract][Full Text] [Related]
18. Equivalence between short-time biphasic and incompressible elastic material responses. Ateshian GA; Ellis BJ; Weiss JA J Biomech Eng; 2007 Jun; 129(3):405-12. PubMed ID: 17536908 [TBL] [Abstract][Full Text] [Related]
19. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid. Santos JE; Savioli GB J Acoust Soc Am; 2015 Nov; 138(5):3033-42. PubMed ID: 26627777 [TBL] [Abstract][Full Text] [Related]
20. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]