These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17348523)

  • 1. Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 2007 Feb; 121(2):1003-16. PubMed ID: 17348523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL; de Boer E; Fahey PF; Guinan JJ
    J Acoust Soc Am; 2007 Mar; 121(3):1564-75. PubMed ID: 17407894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Allen-Fahey experiment extended.
    de Boer E; Nuttall AL; Hu N; Zou Y; Zheng J
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1260-6. PubMed ID: 15807015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2.
    Siegel JH; Kim DO; Molnar CE
    J Neurophysiol; 1982 Feb; 47(2):303-28. PubMed ID: 7062102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.
    Dong W
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
    Meenderink SW; van der Heijden M
    J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of sources of distortion product otoacoustic emissions by onset-decomposition.
    Vetesník A; Turcanu D; Dalhoff E; Gummer AW
    Hear Res; 2009 Oct; 256(1-2):21-38. PubMed ID: 19523509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supporting evidence for reverse cochlear traveling waves.
    Dong W; Olson ES
    J Acoust Soc Am; 2008 Jan; 123(1):222-40. PubMed ID: 18177153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear compression wave: an implication of the Allen-Fahey experiment.
    Ren T; Nuttall AL
    J Acoust Soc Am; 2006 Apr; 119(4):1940-2. PubMed ID: 16642805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice.
    Dewey JB; Shera CA
    J Assoc Res Otolaryngol; 2023 Jun; 24(3):305-324. PubMed ID: 37072566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study.
    Knight RD; Kemp DT
    J Acoust Soc Am; 2000 Jan; 107(1):457-73. PubMed ID: 10641654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intracochlear DP-gram: Proof of principle in noise-damaged rabbits.
    Martin GK; Stagner BB; Dong W; Lonsbury-Martin BL
    Hear Res; 2020 Oct; 396():108058. PubMed ID: 32871416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products.
    Brown DJ; Hartsock JJ; Gill RM; Fitzgerald HE; Salt AN
    J Acoust Soc Am; 2009 Apr; 125(4):2129-45. PubMed ID: 19354389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea?
    Liberman MC; Zuo J; Guinan JJ
    J Acoust Soc Am; 2004 Sep; 116(3):1649-55. PubMed ID: 15478431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products.
    Kössl M; Vater M
    Hear Res; 1996 May; 94(1-2):78-86. PubMed ID: 8789813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Mar; 91(3):1587-607. PubMed ID: 1564196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.