These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 17348533)

  • 21. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of chaotic vibrations in symmetric vocal folds.
    Jiang JJ; Zhang Y; Stern J
    J Acoust Soc Am; 2001 Oct; 110(4):2120-8. PubMed ID: 11681389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model.
    Zhang Z; Neubauer J; Berry DA
    J Sound Vib; 2009 Apr; 322(1-2):299-313. PubMed ID: 20161071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acquisition of detailed laryngeal flow measurements in geometrically realistic models.
    Farley J; Thomson SL
    J Acoust Soc Am; 2011 Aug; 130(2):EL82-6. PubMed ID: 21877775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclicity of laryngeal cavity resonance due to vocal fold vibration.
    Kitamura T; Takemoto H; Adachi S; Mokhtari P; Honda K
    J Acoust Soc Am; 2006 Oct; 120(4):2239-49. PubMed ID: 17069319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the application of the lattice Boltzmann method to the investigation of glottal flow.
    Kucinschi BR; Afjeh AA; Scherer RC
    J Acoust Soc Am; 2008 Jul; 124(1):523-34. PubMed ID: 18646995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Glottal and supraglottal configuration during whispering].
    Fleischer S; Kothe C; Hess M
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of collision on the flow through in-vitro rigid models of the vocal folds.
    Deverge M; Pelorson X; Vilain C; Lagrée PY; Chentouf F; Willems J; Hirschberg A
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3354-62. PubMed ID: 14714815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of vocal doses in speech: experimental procedure and signal processing.
    Svec JG; Popolo PS; Titze IR
    Logoped Phoniatr Vocol; 2003; 28(4):181-92. PubMed ID: 14686546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ventricular-fold dynamics in human phonation.
    Bailly L; Bernardoni NH; Müller F; Rohlfs AK; Hess M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Potential Role of Subglottal Convergence Angle and Measurement.
    Xu X; Wang J; Devine EE; Wang Y; Zhong H; Courtright MR; Zhou L; Zhuang P; Jiang JJ
    J Voice; 2017 Jan; 31(1):116.e1-116.e5. PubMed ID: 27133615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
    Zhang Z
    J Acoust Soc Am; 2010 Nov; 128(5):EL279-85. PubMed ID: 21110539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.