These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 17348647)
41. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. Stare J; Henson NJ; Eckert J J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473 [TBL] [Abstract][Full Text] [Related]
42. Isomers of the uracil dimer: an ab initio benchmark study. Frey JA; Müller A; Losada M; Leutwyler S J Phys Chem B; 2007 Apr; 111(13):3534-42. PubMed ID: 17388514 [TBL] [Abstract][Full Text] [Related]
43. Computational study of the reactions of SiH3X (X=H, Cl, Br, I) with HCN. Islam SM; Hollett JW; Poirier RA J Phys Chem A; 2007 Jan; 111(3):526-40. PubMed ID: 17228902 [TBL] [Abstract][Full Text] [Related]
44. Theoretical study of unimolecular decomposition of allene cations. Mebel AM; Bandrauk AD J Chem Phys; 2008 Dec; 129(22):224311. PubMed ID: 19071920 [TBL] [Abstract][Full Text] [Related]
45. Volatility and high thermal stability in tantalum complexes containing imido, amidinate, and halide or dialkylamide ligands. Wiedmann MK; Heeg MJ; Winter CH Inorg Chem; 2009 Jun; 48(12):5382-91. PubMed ID: 19499956 [TBL] [Abstract][Full Text] [Related]
46. Computational study of reaction pathways for the formation of indium nitride from trimethylindium with HN3: comparison of the reaction with NH3 and that on TiO2 rutile (110) surface. Tzeng YR; Raghunath P; Chen SC; Lin MC J Phys Chem A; 2007 Jul; 111(29):6781-8. PubMed ID: 17388580 [TBL] [Abstract][Full Text] [Related]
47. Mechanistic studies on the formation of linear polyethylene chain catalyzed by palladium phosphine-sulfonate complexes: experiment and theoretical studies. Noda S; Nakamura A; Kochi T; Chung LW; Morokuma K; Nozaki K J Am Chem Soc; 2009 Oct; 131(39):14088-100. PubMed ID: 19746977 [TBL] [Abstract][Full Text] [Related]
48. Combined DFT, QCISD(T), and G2 mechanism investigation for the reactions of carbon monophosphide CP with unsaturated hydrocarbons allene CH2CCH2 and methylacetylene CH3CCH. Zhao YL; Kan W; Zhong H; Yu HT; Fu HG J Comput Chem; 2007 May; 28(7):1221-33. PubMed ID: 17299769 [TBL] [Abstract][Full Text] [Related]
49. Thermochemistry of the initial steps of methylaluminoxane formation. Aluminoxanes and cycloaluminoxanes by methane elimination from dimethylaluminum hydroxide and its dimeric aggregates. Glaser R; Sun X J Am Chem Soc; 2011 Aug; 133(34):13323-36. PubMed ID: 21819106 [TBL] [Abstract][Full Text] [Related]
50. A crossed molecular beam study on the formation of hexenediynyl radicals (H(2)CCCCCCH; C(6)H(3) (X(2)A')) via reactions of tricarbon molecules, C(3)(X(1)Sigma(g)(+)), with allene (H(2)CCCH(2); X(1)A(1)) and methylacetylene (CH(3)CCH; X(1)A(1)). Guo Y; Gu X; Zhang F; Mebel AM; Kaiser RI Phys Chem Chem Phys; 2007 Apr; 9(16):1972-9. PubMed ID: 17431525 [TBL] [Abstract][Full Text] [Related]
51. A crossed molecular beams study of the reaction of the ethynyl radical (C2H(X2Sigma+)) with allene (H2CCCH2(X1A1)). Zhang F; Kim S; Kaiser RI Phys Chem Chem Phys; 2009 Jun; 11(23):4707-14. PubMed ID: 19492123 [TBL] [Abstract][Full Text] [Related]
52. Crossed molecular beam study on the reaction of boron atoms, B(2Pj), with allene, H2CCCH2(X1A1). Zhang F; Sun HL; Chang AH; Gu X; Kaiser RI J Phys Chem A; 2007 Dec; 111(51):13305-10. PubMed ID: 18052139 [TBL] [Abstract][Full Text] [Related]
53. Energetics and mechanism of the decomposition of trifluoromethanol. Nguyen MT; Matus MH; Vu TN; Haiges R; Christe KO; Dixon DA J Phys Chem A; 2008 Feb; 112(6):1298-312. PubMed ID: 18205340 [TBL] [Abstract][Full Text] [Related]
55. Computational study of the aminolysis of anhydrides: effect of the catalysis to the reaction of succinic anhydride with methylamine in gas phase and nonpolar solution. Petrova T; Okovytyy S; Gorb L; Leszczynski J J Phys Chem A; 2008 Jun; 112(23):5224-35. PubMed ID: 18491887 [TBL] [Abstract][Full Text] [Related]
56. Establishment of the C(2)H(5)+O(2) reaction mechanism: a combustion archetype. Wilke JJ; Allen WD; Schaefer HF J Chem Phys; 2008 Feb; 128(7):074308. PubMed ID: 18298150 [TBL] [Abstract][Full Text] [Related]
57. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis. Motono C; Gromiha MM; Kumar S Proteins; 2008 May; 71(2):655-69. PubMed ID: 17975840 [TBL] [Abstract][Full Text] [Related]
58. Tracking the chemistry of unsaturated C3H3 groups adsorbed on a silver surface: propargyl-allenyl-acetylide triple bond migration, self-hydrogenation, and carbon-carbon bond formation. Kung H; Wu SM; Wu YJ; Yang YW; Chiang CM J Am Chem Soc; 2008 Aug; 130(31):10263-73. PubMed ID: 18613681 [TBL] [Abstract][Full Text] [Related]
59. The mechanisms of the reactions of W and W+ with COx (x=1, 2): a computational study. Musaev DG; Irle S; Lin MC J Phys Chem A; 2007 Jul; 111(29):6665-73. PubMed ID: 17388392 [TBL] [Abstract][Full Text] [Related]
60. Heats of formation of triplet ethylene, ethylidene, and acetylene. Nguyen MT; Matus MH; Lester WA; Dixon DA J Phys Chem A; 2008 Mar; 112(10):2082-7. PubMed ID: 18047300 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]