These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17349248)

  • 1. [Energy expenditure in critically ill children: correlation with clinical characteristics, caloric intake, and predictive equations].
    López-Herce Cid J; Sánchez Sánchez C; Mencía Bartolomé S; Santiago Lozano MJ; Carrillo Alvarez A; Bellón Cano JM
    An Pediatr (Barc); 2007 Mar; 66(3):229-39. PubMed ID: 17349248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO
    Koekkoek WAC; Xiaochen G; van Dijk D; van Zanten ARH
    Clin Nutr ESPEN; 2020 Oct; 39():137-143. PubMed ID: 32859307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept.
    Stapel SN; de Grooth HJ; Alimohamad H; Elbers PW; Girbes AR; Weijs PJ; Oudemans-van Straaten HM
    Crit Care; 2015 Oct; 19():370. PubMed ID: 26494245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children.
    Oosterveld MJ; Van Der Kuip M; De Meer K; De Greef HJ; Gemke RJ
    Pediatr Crit Care Med; 2006 Mar; 7(2):147-53. PubMed ID: 16531947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children.
    Jotterand Chaparro C; Taffé P; Moullet C; Laure Depeyre J; Longchamp D; Perez MH; Cotting J
    J Pediatr; 2017 May; 184():220-226.e5. PubMed ID: 28108105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy imbalance and the risk of overfeeding in critically ill children.
    Mehta NM; Bechard LJ; Dolan M; Ariagno K; Jiang H; Duggan C
    Pediatr Crit Care Med; 2011 Jul; 12(4):398-405. PubMed ID: 20975614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child.
    Sion-Sarid R; Cohen J; Houri Z; Singer P
    Nutrition; 2013 Sep; 29(9):1094-9. PubMed ID: 23927944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indirect calorimetry reveals that better monitoring of nutrition therapy in pediatric intensive care is needed.
    Dokken M; Rustøen T; Stubhaug A
    JPEN J Parenter Enteral Nutr; 2015 Mar; 39(3):344-52. PubMed ID: 24255088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect calorimetry in critically ill mechanically ventilated patients: Comparison of E-sCOVX with the deltatrac.
    Stapel SN; Weijs PJM; Girbes ARJ; Oudemans-van Straaten HM
    Clin Nutr; 2019 Oct; 38(5):2155-2160. PubMed ID: 30245021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adequate feeding and the usefulness of the respiratory quotient in critically ill children.
    Hulst JM; van Goudoever JB; Zimmermann LJ; Hop WC; Büller HA; Tibboel D; Joosten KF
    Nutrition; 2005 Feb; 21(2):192-8. PubMed ID: 15723748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy expenditure in critically ill children.
    Briassoulis G; Venkataraman S; Thompson AE
    Crit Care Med; 2000 Apr; 28(4):1166-72. PubMed ID: 10809300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Determination of resting energy expenditure in critically ill children experiencing mechanical ventilation].
    Dong HB; Yang YW; Wang Y; Hong L
    Zhonghua Er Ke Za Zhi; 2012 Nov; 50(11):847-50. PubMed ID: 23302617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate determination of energy needs in hospitalized patients.
    Boullata J; Williams J; Cottrell F; Hudson L; Compher C
    J Am Diet Assoc; 2007 Mar; 107(3):393-401. PubMed ID: 17324656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Assessment of energy metabolism and nutritional supply in children with mechanical ventilation].
    Ji J; Qian S; Yan J
    Zhonghua Er Ke Za Zhi; 2016 Jan; 54(1):28-32. PubMed ID: 26791920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Indirect Calorimetry to Detect Overfeeding in Critically Ill Children: Finding the Appropriate Definition.
    Kerklaan D; Hulst JM; Verhoeven JJ; Verbruggen SC; Joosten KF
    J Pediatr Gastroenterol Nutr; 2016 Oct; 63(4):445-50. PubMed ID: 26998927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do PICU patients meet technical criteria for performing indirect calorimetry?
    Beggs MR; Garcia Guerra G; Larsen BMK
    Clin Nutr ESPEN; 2016 Oct; 15():80-84. PubMed ID: 28531789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing Underfeeding and Overfeeding: A Clinician's Guide to the Acquisition and Implementation of Indirect Calorimetry.
    Ladd AK; Skillman HE; Haemer MA; Mourani PM
    Nutr Clin Pract; 2018 Apr; 33(2):198-205. PubMed ID: 28549221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of measured versus predicted energy requirements in critically ill cancer patients.
    Pirat A; Tucker AM; Taylor KA; Jinnah R; Finch CG; Canada TD; Nates JL
    Respir Care; 2009 Apr; 54(4):487-94. PubMed ID: 19327184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy estimation and measurement in critically ill patients.
    Fraipont V; Preiser JC
    JPEN J Parenter Enteral Nutr; 2013 Nov; 37(6):705-13. PubMed ID: 24113283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.