BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1734962)

  • 1. Identification of two cysteine residues forming a pair of vicinal thiols in glucosamine-6-phosphate deaminase from Escherichia coli and a study of their functional role by site-directed mutagenesis.
    Altamirano MM; Plumbridge JA; Calcagno ML
    Biochemistry; 1992 Feb; 31(4):1153-8. PubMed ID: 1734962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucosamine-6-phosphate deaminase from Escherichia coli has a trimer of dimers structure with three intersubunit disulphides.
    Altamirano MM; Plumbridge JA; Barba HA; Calcagno ML
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):645-8. PubMed ID: 8240271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc binding and its trapping by allosteric transition in glucosamine-6-phosphate deaminase from Escherichia coli.
    Altamirano MM; Calcagno M
    Biochim Biophys Acta; 1990 May; 1038(3):291-4. PubMed ID: 2111170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrochemical evidence for the presence of a tyrosine residue in the allosteric site of glucosamine-6-phosphate deaminase from Escherichia coli.
    Altamirano MM; Hernandez-Arana A; Tello-Solis S; Calcagno ML
    Eur J Biochem; 1994 Mar; 220(2):409-13. PubMed ID: 8125098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase.
    Montero-Morán GM; Lara-González S; Alvarez-Añorve LI; Plumbridge JA; Calcagno ML
    Biochemistry; 2001 Aug; 40(34):10187-96. PubMed ID: 11513596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for vicinal thiols and their functional role in glucosamine-6-phosphate deaminase from Escherichia coli.
    Altamirano MM; Libreros-Minotta CA; Lara-Lemus R; Calcagno M
    Arch Biochem Biophys; 1989 Mar; 269(2):555-61. PubMed ID: 2645829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric allosteric activation of Escherichia coli glucosamine-6-phosphate deaminase produced by replacements of Tyr 121.
    Altamirano MM; Plumbridge JA; Horjales E; Calcagno ML
    Biochemistry; 1995 May; 34(18):6074-82. PubMed ID: 7742311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyr254 hydroxyl group acts as a two-way switch mechanism in the coupling of heterotropic and homotropic effects in Escherichia coli glucosamine-6-phosphate deaminase.
    Montero-Morán GM; Horjales E; Calcagno ML; Altamirano MM
    Biochemistry; 1998 May; 37(21):7844-9. PubMed ID: 9601045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates.
    Alvarez-Añorve LI; Calcagno ML; Plumbridge J
    J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 A resolution.
    Oliva G; Fontes MR; Garratt RC; Altamirano MM; Calcagno ML; Horjales E
    Structure; 1995 Dec; 3(12):1323-32. PubMed ID: 8747459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed fluorescence labeling reveals differences on the R-conformer of glucosamine 6-phosphate deaminase of Escherichia coli induced by active or allosteric site ligands at steady state.
    Sosa-Peinado A; González-Andrade M
    Biochemistry; 2005 Nov; 44(46):15083-92. PubMed ID: 16285712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the functional role of Arg172 in substrate binding and allosteric transition in Escherichia coli glucosamine-6-phosphate deaminase.
    Lucumí-Moreno A; Calcagno ML
    Arch Biochem Biophys; 2005 Oct; 442(1):41-8. PubMed ID: 16168949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversion of the allosteric response of Escherichia coli glucosamine-6-P deaminase to N-acetylglucosamine 6-P, by single amino acid replacements.
    Cisneros DA; Montero-Morán GM; Lara-González S; Calcagno ML
    Arch Biochem Biophys; 2004 Jan; 421(1):77-84. PubMed ID: 14678787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 A resolution.
    Horjales E; Altamirano MM; Calcagno ML; Garratt RC; Oliva G
    Structure; 1999 May; 7(5):527-37. PubMed ID: 10378272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML
    J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cys359 of GrdD is the active-site thiol that catalyses the final step of acetyl phosphate formation by glycine reductase from Eubacterium acidaminophilum.
    Kohlstock UM; Rücknagel KP; Reuter M; Schierhorn A; Andreesen JR; Söhling B
    Eur J Biochem; 2001 Dec; 268(24):6417-25. PubMed ID: 11737196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for two different mechanisms triggering the change in quaternary structure of the allosteric enzyme, glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Ramírez-Costa M; De Anda-Aguilar L; Hinojosa-Ocaña P; Calcagno ML
    Biochemistry; 2005 Feb; 44(4):1127-35. PubMed ID: 15667206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations.
    Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J
    J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering of a bacterial N-acyl-d-glucosamine 2-epimerase for improved stability under process conditions.
    Klermund L; Riederer A; Hunger A; Castiglione K
    Enzyme Microb Technol; 2016 Jun; 87-88():70-8. PubMed ID: 27178797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.