BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17349678)

  • 1. Telemetered electromyography of peroneus longus in Varecia variegata and Eulemur rubriventer: implications for the functional significance of a large peroneal process.
    Boyer DM; Patel BA; Larson SG; Stern JT
    J Hum Evol; 2007 Aug; 53(2):119-34. PubMed ID: 17349678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hallucal grasping in Nycticebus coucang: further implications for the functional significance of a large peroneal process.
    Kingston AK; Boyer DM; Patel BA; Larson SG; Stern JT
    J Hum Evol; 2010 Jan; 58(1):33-42. PubMed ID: 19800655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromyography of crural and pedal muscles in tufted capuchin monkeys (Sapajus apella): Implications for hallucal grasping behavior and first metatarsal morphology in euprimates.
    Patel BA; Larson SG; Stern JT
    Am J Phys Anthropol; 2015 Apr; 156(4):553-64. PubMed ID: 25693754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hallucal grasping behavior in Caluromys (Didelphimorphia: Didelphidae): Implications for primate pedal grasping.
    Youlatos D
    J Hum Evol; 2008 Dec; 55(6):1096-101. PubMed ID: 18715624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative functional morphology of the primate peroneal process.
    Jacobs RL; Boyer DM; Patel BA
    J Hum Evol; 2009 Dec; 57(6):721-31. PubMed ID: 19765802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional morphology of the hallucal metatarsal with implications for inferring grasping ability in extinct primates.
    Goodenberger KE; Boyer DM; Orr CM; Jacobs RL; Femiani JC; Patel BA
    Am J Phys Anthropol; 2015 Mar; 156(3):327-48. PubMed ID: 25378276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion, postures, substrate use, and foot grasping in the marsupial feathertail glider Acrobates pygmaeus (Diprotodontia: Acrobatidae): Insights into early euprimate evolution.
    Youlatos D; Moussa D; Karantanis NE; Rychlik L
    J Hum Evol; 2018 Oct; 123():148-159. PubMed ID: 30097183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping primate origins.
    Bloch JI; Boyer DM
    Science; 2002 Nov; 298(5598):1606-10. PubMed ID: 12446906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMG of the human flexor pollicis longus muscle: implications for the evolution of hominid tool use.
    Hamrick MW; Churchill SE; Schmitt D; Hylander WL
    J Hum Evol; 1998 Feb; 34(2):123-36. PubMed ID: 9503091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New primate first metatarsals from the Paleogene of Egypt and the origin of the anthropoid big toe.
    Patel BA; Seiffert ER; Boyer DM; Jacobs RL; St Clair EM; Simons EL
    J Hum Evol; 2012 Jul; 63(1):99-120. PubMed ID: 22694838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct functional roles of primate grasping hands and feet during arboreal quadrupedal locomotion.
    Patel BA; Wallace IJ; Boyer DM; Granatosky MC; Larson SG; Stern JT
    J Hum Evol; 2015 Nov; 88():79-84. PubMed ID: 26553820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hindlimb suspension and hind foot reversal in Varecia variegata and other arboreal mammals.
    Meldrum DJ; Dagosto M; White J
    Am J Phys Anthropol; 1997 May; 103(1):85-102. PubMed ID: 9185953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The skeleton of early Eocene Cantius, oldest lemuriform primate.
    Rose KD; Walker A
    Am J Phys Anthropol; 1985 Jan; 66(1):73-89. PubMed ID: 3976872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Central Role of Small Vertical Substrates for the Origin of Grasping in Early Primates.
    Toussaint S; Llamosi A; Morino L; Youlatos D
    Curr Biol; 2020 May; 30(9):1600-1613.e3. PubMed ID: 32169214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Electrical study and functional approach to the peroneal muscles].
    Guillot M; Tanguy A; Escande G; Vanneuville G; Sauvanet R
    Bull Assoc Anat (Nancy); 1979 Dec; 63(183):411-24. PubMed ID: 553671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body size and the small branch niche: using marsupial ontogeny to model primate locomotor evolution.
    Shapiro LJ; Young JW; VandeBerg JL
    J Hum Evol; 2014 Mar; 68():14-31. PubMed ID: 24508352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The morphological basis of hallucal orientation in extant birds.
    Middleton KM
    J Morphol; 2001 Oct; 250(1):51-60. PubMed ID: 11599015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body size and scaling of the hands and feet of prosimian primates.
    Lemelin P; Jungers WL
    Am J Phys Anthropol; 2007 Jun; 133(2):828-40. PubMed ID: 17340639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse hallucal metatarsal cross-sectional geometry in a simulated fine branch niche.
    Byron CD; Herrel A; Pauwels E; Muynck AD; Patel BA
    J Morphol; 2015 Jul; 276(7):759-65. PubMed ID: 25758098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and adaptive significance of primate pads and claws: evidence from New World anthropoids.
    Hamrick MW
    Am J Phys Anthropol; 1998 Jun; 106(2):113-27. PubMed ID: 9637179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.