BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 17349953)

  • 21. Post-translational methylations of the archaeal Mre11:Rad50 complex throughout the DNA damage response.
    Kish A; Gaillard JC; Armengaud J; Elie C
    Mol Microbiol; 2016 Apr; 100(2):362-78. PubMed ID: 26724682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tel1 and Rif2 Regulate MRX Functions in End-Tethering and Repair of DNA Double-Strand Breaks.
    Cassani C; Gobbini E; Wang W; Niu H; Clerici M; Sung P; Longhese MP
    PLoS Biol; 2016 Feb; 14(2):e1002387. PubMed ID: 26901759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae.
    Zhang X; Paull TT
    DNA Repair (Amst); 2005 Nov; 4(11):1281-94. PubMed ID: 16043424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A dynamic allosteric pathway underlies Rad50 ABC ATPase function in DNA repair.
    Boswell ZK; Rahman S; Canny MD; Latham MP
    Sci Rep; 2018 Jan; 8(1):1639. PubMed ID: 29374232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells.
    Lewis LK; Storici F; Van Komen S; Calero S; Sung P; Resnick MA
    Genetics; 2004 Apr; 166(4):1701-13. PubMed ID: 15126391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast xrs2 binds DNA and helps target rad50 and mre11 to DNA ends.
    Trujillo KM; Roh DH; Chen L; Van Komen S; Tomkinson A; Sung P
    J Biol Chem; 2003 Dec; 278(49):48957-64. PubMed ID: 14522986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes.
    Chen L; Trujillo K; Ramos W; Sung P; Tomkinson AE
    Mol Cell; 2001 Nov; 8(5):1105-15. PubMed ID: 11741545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for adenylate kinase activity in ABC ATPases.
    Lammens A; Hopfner KP
    J Mol Biol; 2010 Aug; 401(2):265-73. PubMed ID: 20600125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity.
    Krogh BO; Llorente B; Lam A; Symington LS
    Genetics; 2005 Dec; 171(4):1561-70. PubMed ID: 16143598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex.
    Möckel C; Lammens K; Schele A; Hopfner KP
    Nucleic Acids Res; 2012 Jan; 40(2):914-27. PubMed ID: 21937514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair.
    Hopfner KP; Craig L; Moncalian G; Zinkel RA; Usui T; Owen BA; Karcher A; Henderson B; Bodmer JL; McMurray CT; Carney JP; Petrini JH; Tainer JA
    Nature; 2002 Aug; 418(6897):562-6. PubMed ID: 12152085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turning the Mre11/Rad50 DNA repair complex on its head: lessons from SMC protein hinges, dynamic coiled-coil movements and DNA loop-extrusion?
    Zabolotnaya E; Mela I; Henderson RM; Robinson NP
    Biochem Soc Trans; 2020 Dec; 48(6):2359-2376. PubMed ID: 33300987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex.
    Trujillo KM; Sung P
    J Biol Chem; 2001 Sep; 276(38):35458-64. PubMed ID: 11454871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex.
    Connelly JC; Leach DR
    Trends Biochem Sci; 2002 Aug; 27(8):410-8. PubMed ID: 12151226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sae2 promotes DNA damage resistance by removing the Mre11-Rad50-Xrs2 complex from DNA and attenuating Rad53 signaling.
    Chen H; Donnianni RA; Handa N; Deng SK; Oh J; Timashev LA; Kowalczykowski SC; Symington LS
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1880-7. PubMed ID: 25831494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae.
    Johzuka K; Ogawa H
    Genetics; 1995 Apr; 139(4):1521-32. PubMed ID: 7789757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Meiotic localization of Mre11 and Rad50 in wild type, spo11-1, and MRN complex mutants of Coprinus cinereus.
    Many AM; Melki CS; Savytskyy OP; Maillet DS; Acharya SN; Zolan ME
    Chromosoma; 2009 Aug; 118(4):471-86. PubMed ID: 19396455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutation of Conserved Mre11 Residues Alter Protein Dynamics to Separate Nuclease Functions.
    Rahman S; Beikzadeh M; Canny MD; Kaur N; Latham MP
    J Mol Biol; 2020 May; 432(10):3289-3308. PubMed ID: 32246962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage.
    Ciapponi L; Cenci G; Ducau J; Flores C; Johnson-Schlitz D; Gorski MM; Engels WR; Gatti M
    Curr Biol; 2004 Aug; 14(15):1360-6. PubMed ID: 15296753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the Rad50 x Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy.
    Anderson DE; Trujillo KM; Sung P; Erickson HP
    J Biol Chem; 2001 Oct; 276(40):37027-33. PubMed ID: 11470800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.