These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17350229)

  • 1. Anaerobic oxalate consumption by microorganisms in forest soils.
    Daniel SL; Pilsl C; Drake HL
    Res Microbiol; 2007 Apr; 158(3):303-9. PubMed ID: 17350229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial bioavailability of pyrene in three laboratory-contaminated soils under aerobic and anaerobic conditions.
    Pravecek TL; Christman RF; Pfaender FK
    J Contam Hydrol; 2006 Jun; 86(1-2):72-86. PubMed ID: 16574273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enterobacteriaceae facilitate the anaerobic degradation of glucose by a forest soil.
    Degelmann DM; Kolb S; Dumont M; Murrell JC; Drake HL
    FEMS Microbiol Ecol; 2009 Jun; 68(3):312-9. PubMed ID: 19453494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal variation of microbial ecology in hemlock soil of Tatachia Mountain, Taiwan.
    Yang SS; Tsai SH; Fan HY; Yang CK; Hung WL; Cho ST
    J Microbiol Immunol Infect; 2006 Jun; 39(3):195-205. PubMed ID: 16783449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria.
    King GM
    FEMS Microbiol Ecol; 2006 Apr; 56(1):1-7. PubMed ID: 16542399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment.
    Yang S; Yoshida N; Baba D; Katayama A
    Chemosphere; 2008 Mar; 71(2):328-36. PubMed ID: 17950776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation and consumption of odorous compounds in feedlot soils under aerobic, fermentative, and anaerobic respiratory conditions.
    Miller DN
    J Anim Sci; 2001 Oct; 79(10):2503-12. PubMed ID: 11721828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nitrate on oxalate- and glyoxylate-dependent growth and acetogenesis by Moorella thermoacetica.
    Seifritz C; Fröstl JM; Drake HL; Daniel SL
    Arch Microbiol; 2002 Dec; 178(6):457-64. PubMed ID: 12420166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous methanogenesis stimulates oxidation of atmospheric CH(4) in alpine tundra soil.
    West AE; Schimdt SK
    Microb Ecol; 2002 May; 43(4):408-15. PubMed ID: 12043000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compaction of forest soil by logging machinery favours occurrence of prokaryotes.
    Schnurr-Pütz S; Bååth E; Guggenberger G; Drake HL; Küsel K
    FEMS Microbiol Ecol; 2006 Dec; 58(3):503-16. PubMed ID: 17117992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.
    Küsel K; Wagner C; Trinkwalter T; Gössner AS; Bäumler R; Drake HL
    FEMS Microbiol Ecol; 2002 Apr; 40(1):73-81. PubMed ID: 19709213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxalate metabolism by the acetogenic bacterium Moorella thermoacetica.
    Daniel SL; Pilsl C; Drake HL
    FEMS Microbiol Lett; 2004 Feb; 231(1):39-43. PubMed ID: 14769464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils.
    Gulledge J; Hrywna Y; Cavanaugh C; Steudler PA
    FEMS Microbiol Ecol; 2004 Sep; 49(3):389-400. PubMed ID: 19712289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic biodegradation of 4-alkylphenols in a paddy soil microcosm supplemented with nitrate.
    Shibata A; Toyota K; Miyake K; Katayama A
    Chemosphere; 2007 Aug; 68(11):2096-103. PubMed ID: 17408723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc fractionation in contaminated soils by sequential and single extractions: influence of soil properties and zinc content.
    Voegelin A; Tokpa G; Jacquat O; Barmettler K; Kretzschmar R
    J Environ Qual; 2008; 37(3):1190-200. PubMed ID: 18453438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on composition of the methanotrophic community in rice field and forest soil.
    Mohanty SR; Bodelier PL; Conrad R
    FEMS Microbiol Ecol; 2007 Oct; 62(1):24-31. PubMed ID: 17725622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral analysis of coniferous foliage and possible links to soil chemistry: are spectral chlorophyll indices related to forest floor dissolved organic C and N?
    Albrechtova J; Seidl Z; Aitkenhead-Peterson J; Lhotáková Z; Rock BN; Alexander JE; Malenovský Z; McDowell WH
    Sci Total Environ; 2008 Oct; 404(2-3):424-32. PubMed ID: 18191443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials.
    Jaesche P; Totsche KU; Kögel-Knabner I
    J Contam Hydrol; 2006 May; 85(3-4):271-86. PubMed ID: 16563561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile.
    Kandeler E; Brune T; Enowashu E; Dörr N; Guggenberger G; Lamersdorf N; Philippot L
    FEMS Microbiol Ecol; 2009 Mar; 67(3):444-54. PubMed ID: 19220860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of soil properties on the enantioselective dissipation of the herbicide lactofen in soils.
    Diao J; Lv C; Wang X; Dang Z; Zhu W; Zhou Z
    J Agric Food Chem; 2009 Jul; 57(13):5865-71. PubMed ID: 19507858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.