These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 17350273)

  • 41. Measurements of the neutron dose near a 15 Mv medical linear accelerator.
    Golnik N; Zielczynski M; Bulski W; Tulik P; Palko T
    Radiat Prot Dosimetry; 2007; 126(1-4):619-22. PubMed ID: 17513292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast, epithermal and thermal photoneutron dosimetry in air and in tissue equivalent phantom for a high-energy X-ray medical accelerator.
    Sohrabi M; Hakimi A
    Z Med Phys; 2018 Feb; 28(1):49-62. PubMed ID: 28546005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shielding evaluation of a medical linear accelerator vault in preparation for installing a high-dose rate 252Cf remote afterloader.
    Melhus CS; Rivard MJ; Kurkomelis J; Liddle CB; Massé FX
    Radiat Prot Dosimetry; 2005; 113(4):428-37. PubMed ID: 15755770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Comparison of dosimetric properties of 15-MV-photons and 14-MeV-neutrons in external stereotaxic convergence therapy].
    Höver KH; Hesse BM; Oetzel D; Rhein B; Lorenz WJ; Engelhart R; Kimmig B; Wannenmacher M
    Strahlenther Onkol; 1991 Nov; 167(11):651-7. PubMed ID: 1962279
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dosimetric characteristics of unflattened 6 MV photon beams of a clinical linear accelerator: a Monte Carlo study.
    Mesbahi A
    Appl Radiat Isot; 2007 Sep; 65(9):1029-36. PubMed ID: 17616465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantification of beta+ activity generated by hard photons by means of PET.
    Möckel D; Müller H; Pawelke J; Sommer M; Will E; Enghardt W
    Phys Med Biol; 2007 May; 52(9):2515-30. PubMed ID: 17440249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel 6MV X-ray photoneutron detection and dosimetry of medical accelerators.
    Sohrabi M; Hakimi A
    Phys Med; 2017 Apr; 36():103-109. PubMed ID: 28410678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities.
    Ghassoun J; Senhou N
    Appl Radiat Isot; 2012 Apr; 70(4):620-4. PubMed ID: 22257567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dose rate outside primary barriers.
    McGinley PH
    Health Phys; 2001 Feb; 80(2 Suppl):S7-8. PubMed ID: 11197515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of the effects of high-energy photon beam irradiation (10 and 18 MV) on 2 types of implantable cardioverter-defibrillators.
    Hashii H; Hashimoto T; Okawa A; Shida K; Isobe T; Hanmura M; Nishimura T; Aonuma K; Sakae T; Sakurai H
    Int J Radiat Oncol Biol Phys; 2013 Mar; 85(3):840-5. PubMed ID: 22818414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AMBIENT DOSE EQUIVALENT RECEIVED AT 15 MV LINAC ENVIRONMENTS DUE TO PHOTONEUTRONS CONTAMINATION.
    Vagena E; Katsaras P; Theodorou K; Stoulos S
    Radiat Prot Dosimetry; 2018 Dec; 182(4):472-479. PubMed ID: 29961846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dose equivalent consideration from neutron contamination in modified radiotherapy vault: a Monte Carlo study.
    Saadatmand P; Mahdavi SR; Chegeni N; Karimi AH
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38861949
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the neutron radiation field and air activation around a medical electron linac.
    Horst F; Fehrenbacher G; Zink K
    Radiat Prot Dosimetry; 2017 Apr; 174(2):147-158. PubMed ID: 27170731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of photoneutron dose equivalent in 10 MV and 15 MV beams for wedge and open fields in the Elekta Versa HD linac.
    Khilafath HRAS; Ganesan B; Sekar N; Mohapatra D; Mahadevan P; Vellingiri J; Prakasarao A; Singaravelu G
    Appl Radiat Isot; 2022 Oct; 188():110363. PubMed ID: 35863145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigating in-field and out-of-field neutron contamination in high-energy medical linear accelerators based on the treatment factors of field size, depth, beam modifiers, and beam type.
    Biltekin F; Yeginer M; Ozyigit G
    Phys Med; 2015 Jul; 31(5):517-23. PubMed ID: 25873196
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The neutron component of two high-energy photon reference fields.
    Röttger S; Schäler K; Behrens R; Nolte R; Wissmann F
    Radiat Prot Dosimetry; 2007; 126(1-4):404-7. PubMed ID: 17675300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photon and neutron dose contributions and mean quality factors phantoms of different size irradiated by monoenergetic neutrons.
    Dietze G; Siebert BR
    Radiat Res; 1994 Oct; 140(1):130-3. PubMed ID: 7938446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of photoneutron dosimetric characteristics in tissues/organs using an improved simple model of linac head.
    Khabaz R; Boodaghi R; Benam MR; Zanganeh V
    Appl Radiat Isot; 2018 Mar; 133():88-94. PubMed ID: 29310104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Triple chamber technique for thermal neutron dose measurements in fast neutron beams.
    Schmidt R; Hess A
    Strahlentherapie; 1982 Oct; 158(10):612-5. PubMed ID: 7179343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.