These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 17350627)
1. Predominantly buried residues in the response regulator Spo0F influence specific sensor kinase recognition. McLaughlin PD; Bobay BG; Regel EJ; Thompson RJ; Hoch JA; Cavanagh J FEBS Lett; 2007 Apr; 581(7):1425-9. PubMed ID: 17350627 [TBL] [Abstract][Full Text] [Related]
2. Alanine mutants of the Spo0F response regulator modifying specificity for sensor kinases in sporulation initiation. Jiang M; Tzeng YL; Feher VA; Perego M; Hoch JA Mol Microbiol; 1999 Jul; 33(2):389-95. PubMed ID: 10411754 [TBL] [Abstract][Full Text] [Related]
3. Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB. Tzeng YL; Feher VA; Cavanagh J; Perego M; Hoch JA Biochemistry; 1998 Nov; 37(47):16538-45. PubMed ID: 9843420 [TBL] [Abstract][Full Text] [Related]
4. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. Tzeng YL; Hoch JA J Mol Biol; 1997 Sep; 272(2):200-12. PubMed ID: 9299348 [TBL] [Abstract][Full Text] [Related]
5. Interaction surface of the Spo0A response regulator with the Spo0E phosphatase. Stephenson SJ; Perego M Mol Microbiol; 2002 Jun; 44(6):1455-67. PubMed ID: 12067336 [TBL] [Abstract][Full Text] [Related]
6. Dissection of the functional and structural domains of phosphorelay histidine kinase A of Bacillus subtilis. Wang L; Fabret C; Kanamaru K; Stephenson K; Dartois V; Perego M; Hoch JA J Bacteriol; 2001 May; 183(9):2795-802. PubMed ID: 11292798 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of divalent metals binding to the Bacillus subtilis response regulator Spo0F: the possibility for in vitro metalloregulation in the initiation of sporulation. Kojetin DJ; Thompson RJ; Benson LM; Naylor S; Waterman J; Davies KG; Opperman CH; Stephenson K; Hoch JA; Cavanagh J Biometals; 2005 Oct; 18(5):449-66. PubMed ID: 16333746 [TBL] [Abstract][Full Text] [Related]
8. A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Zapf J; Sen U; Madhusudan ; Hoch JA; Varughese KI Structure; 2000 Aug; 8(8):851-62. PubMed ID: 10997904 [TBL] [Abstract][Full Text] [Related]
9. Structural basis of response regulator dephosphorylation by Rap phosphatases. Parashar V; Mirouze N; Dubnau DA; Neiditch MB PLoS Biol; 2011 Feb; 9(2):e1000589. PubMed ID: 21346797 [TBL] [Abstract][Full Text] [Related]
10. The kinase activity of the antisigma factor SpoIIAB is required for activation as well as inhibition of transcription factor sigmaF during sporulation in Bacillus subtilis. Garsin DA; Duncan L; Paskowitz DM; Losick R J Mol Biol; 1998 Dec; 284(3):569-78. PubMed ID: 9826499 [TBL] [Abstract][Full Text] [Related]
11. A response regulatory protein with the site of phosphorylation blocked by an arginine interaction: crystal structure of Spo0F from Bacillus subtilis. Madhusudan M; Zapf J; Hoch JA; Whiteley JM; Xuong NH; Varughese KI Biochemistry; 1997 Oct; 36(42):12739-45. PubMed ID: 9335530 [TBL] [Abstract][Full Text] [Related]
12. Overview of protein phosphorylation in bacteria with a main focus on unusual protein kinases in Bacillus subtilis. Zhang A; Pompeo F; Galinier A Res Microbiol; 2021; 172(7-8):103871. PubMed ID: 34500011 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of a phosphatase-resistant mutant of sporulation response regulator Spo0F from Bacillus subtilis. Madhusudan ; Zapf J; Whiteley JM; Hoch JA; Xuong NH; Varughese KI Structure; 1996 Jun; 4(6):679-90. PubMed ID: 8805550 [TBL] [Abstract][Full Text] [Related]
14. A unique GTP-dependent sporulation sensor histidine kinase in Bacillus anthracis. Scaramozzino F; White A; Perego M; Hoch JA J Bacteriol; 2009 Feb; 191(3):687-92. PubMed ID: 18931112 [TBL] [Abstract][Full Text] [Related]
15. High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Feher VA; Zapf JW; Hoch JA; Whiteley JM; McIntosh LP; Rance M; Skelton NJ; Dahlquist FW; Cavanagh J Biochemistry; 1997 Aug; 36(33):10015-25. PubMed ID: 9254596 [TBL] [Abstract][Full Text] [Related]
16. Amino acid identity at one position within the alpha1 helix of both the histidine kinase and the response regulator of the WalRK and PhoPR two-component systems plays a crucial role in the specificity of phosphotransfer. Jende I; Varughese KI; Devine KM Microbiology (Reading); 2010 Jun; 156(Pt 6):1848-1859. PubMed ID: 20167622 [TBL] [Abstract][Full Text] [Related]
17. Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. Mishima M; Shida T; Yabuki K; Kato K; Sekiguchi J; Kojima C Biochemistry; 2005 Aug; 44(30):10153-63. PubMed ID: 16042392 [TBL] [Abstract][Full Text] [Related]
18. NMR structure of the HWE kinase associated response regulator Sma0114 in its activated state. Sheftic SR; White E; Gage DJ; Alexandrescu AT Biochemistry; 2014 Jan; 53(2):311-22. PubMed ID: 24364624 [TBL] [Abstract][Full Text] [Related]
19. Sub-classification of response regulators using the surface characteristics of their receiver domains. Kojetin DJ; Thompson RJ; Cavanagh J FEBS Lett; 2003 Nov; 554(3):231-6. PubMed ID: 14623071 [TBL] [Abstract][Full Text] [Related]
20. Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. Howell A; Dubrac S; Noone D; Varughese KI; Devine K Mol Microbiol; 2006 Feb; 59(4):1199-215. PubMed ID: 16430694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]