BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17350704)

  • 1. Thermostabilization of Pichia stipitis xylitol dehydrogenase by mutation of structural zinc-binding loop.
    Annaluru N; Watanabe S; Pack SP; Saleh AA; Kodaki T; Makino K
    J Biotechnol; 2007 May; 129(4):717-22. PubMed ID: 17350704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of a yeast gene for improvement of enzyme thermostability.
    Annaluru N; Watanabe S; Saleh AA; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):281-2. PubMed ID: 17150927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Various mutations by using yeast gene for protein-engineering.
    Watanabe S; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2004; (48):197-8. PubMed ID: 17150546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of thermotolerant xylitol dehydrogenases from yeast Pichia angusta.
    Biswas D; Datt M; Ganesan K; Mondal AK
    Appl Microbiol Biotechnol; 2010 Dec; 88(6):1311-20. PubMed ID: 20717664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Hou J; Shen Y; Li XP; Bao XM
    Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.
    Khattab SM; Watanabe S; Saimura M; Kodaki T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc.
    Watanabe S; Kodaki T; Makino K
    J Biol Chem; 2005 Mar; 280(11):10340-9. PubMed ID: 15623532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein.
    Lima LH; Pinheiro CG; de Moraes LM; de Freitas SM; Torres FA
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):631-9. PubMed ID: 16896602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.
    Zeng QK; Du HL; Wang JF; Wei DQ; Wang XN; Li YX; Lin Y
    Biotechnol Lett; 2009 Jul; 31(7):1025-9. PubMed ID: 19330484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional characterization of xylitol dehydrogenase genes from Issatchenkia orientalis and Torulaspora delbrueckii.
    Han X; Hu X; Zhou C; Wang H; Li Q; Ouyang Y; Kuang X; Xiao D; Xiang Q; Yu X; Li X; Gu Y; Zhao K; Chen Q; Ma M
    J Biosci Bioeng; 2020 Jul; 130(1):29-35. PubMed ID: 32171656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning, characterization, and engineering of xylitol dehydrogenase from Debaryomyces hansenii.
    Biswas D; Datt M; Aggarwal M; Mondal AK
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1613-23. PubMed ID: 22526783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis.
    Ko BS; Kim DM; Yoon BH; Bai S; Lee HY; Kim JH; Kim IC
    Biotechnol Lett; 2011 Jun; 33(6):1209-13. PubMed ID: 21331586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and characterization of NAD(+)-dependent xylitol dehydrogenase from Candida tropicalis ATCC 20913.
    Ko BS; Jung HC; Kim JH
    Biotechnol Prog; 2006; 22(6):1708-14. PubMed ID: 17137322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of a thermostable xylitol dehydrogenase from Rhizobium etli CFN42.
    Tiwari MK; Moon HJ; Jeya M; Lee JK
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):571-81. PubMed ID: 20177886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154-->Cys forms of yeast xylitol dehydrogenase.
    Klimacek M; Hellmer H; Nidetzky B
    Biochem J; 2007 Jun; 404(3):421-9. PubMed ID: 17343568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Metabolic engineering for improving ethanol fermentation of xylose by wild yeast].
    Zhang L; Zhang L; Ding Z; Wang Z; Shi G
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):950-6. PubMed ID: 18807975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase.
    Watanabe S; Saleh AA; Pack SP; Annaluru N; Kodaki T; Makino K
    J Biotechnol; 2007 Jun; 130(3):316-9. PubMed ID: 17555838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.