BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17350704)

  • 21. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular evolutionary insight of structural zinc atom in yeast xylitol dehydrogenases and its application in bioethanol production by lignocellulosic biomass.
    Yoshiwara K; Watanabe S; Watanabe Y
    Sci Rep; 2023 Feb; 13(1):1920. PubMed ID: 36732376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.
    Wang JF; Wei DQ; Lin Y; Wang YH; Du HL; Li YX; Chou KC
    Biochem Biophys Res Commun; 2007 Jul; 359(2):323-9. PubMed ID: 17544374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual relationships of xylitol and alcohol dehydrogenases in families of two protein types.
    Persson B; Hallborn J; Walfridsson M; Hahn-Hägerdal B; Keränen S; Penttilä M; Jörnvall H
    FEBS Lett; 1993 Jun; 324(1):9-14. PubMed ID: 8504864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and characterization of a novel NAD+ -dependent xylitol dehydrogenase from Gluconobacter oxydans CGMCC 1. 637.
    Lin Y; Xie Z; Zhang J; Bao W; Pan H; Li B
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):726-35. PubMed ID: 22934353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the structural basis for the difference in thermostability displayed by family 10 xylanases.
    Xie H; Flint J; Vardakou M; Lakey JH; Lewis RJ; Gilbert HJ; Dumon C
    J Mol Biol; 2006 Jun; 360(1):157-67. PubMed ID: 16762367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase.
    Hecky J; Müller KM
    Biochemistry; 2005 Sep; 44(38):12640-54. PubMed ID: 16171379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability.
    Choi WC; Kim MH; Ro HS; Ryu SR; Oh TK; Lee JK
    FEBS Lett; 2005 Jun; 579(16):3461-6. PubMed ID: 15949807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xylitol production by a Pichia stipitis D-xylulokinase mutant.
    Jin YS; Cruz J; Jeffries TW
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):42-5. PubMed ID: 15635458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity.
    Metzger MH; Hollenberg CP
    Eur J Biochem; 1995 Feb; 228(1):50-4. PubMed ID: 7883010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal stabilization of penicillolysin, a thermolabile 19 kDa Zn2+-protease, obtained by site-directed mutagenesis.
    Doi Y; Akiyama H; Yamada Y; Ee CE; Lee BR; Ikeguchi M; Ichishima E
    Protein Eng Des Sel; 2004 Mar; 17(3):261-6. PubMed ID: 15115852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S
    J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions.
    Ngo TA; Nakata E; Saimura M; Morii T
    J Am Chem Soc; 2016 Mar; 138(9):3012-21. PubMed ID: 26881296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity.
    Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST
    J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a xylitol dehydrogenase gene from Kluyveromyces marxianus NBRC1777.
    Lulu L; Ling Z; Dongmei W; Xiaolian G; Hisanori T; Hidehiko K; Jiong H
    Mol Biotechnol; 2013 Feb; 53(2):159-69. PubMed ID: 22351371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity.
    Kim JS; Park JB; Jang SW; Ha SJ
    Appl Biochem Biotechnol; 2015 Aug; 176(7):1975-84. PubMed ID: 26043853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis.
    Shi NQ; Cruz J; Sherman F; Jeffries TW
    Yeast; 2002 Oct; 19(14):1203-20. PubMed ID: 12271457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.