BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 17350932)

  • 1. Lineage-specific partitions in archaeal transcription.
    Coulson RM; Touboul N; Ouzounis CA
    Archaea; 2007 May; 2(2):117-25. PubMed ID: 17350932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of SF1 and SF2 helicases from archaea.
    Chamieh H; Ibrahim H; Kozah J
    Gene; 2016 Jan; 576(1 Pt 2):214-28. PubMed ID: 26456193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea.
    Makarova KS; Sorokin AV; Novichkov PS; Wolf YI; Koonin EV
    Biol Direct; 2007 Nov; 2():33. PubMed ID: 18042280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox.
    Brochier C; Forterre P; Gribaldo S
    Genome Biol; 2004; 5(3):R17. PubMed ID: 15003120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion/fission protein family identification in Archaea.
    Padalko A; Nair G; Sousa FL
    mSystems; 2024 Jun; 9(6):e0094823. PubMed ID: 38700364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Hypersaline Archaeal Histones HpyA and HstA Are DNA Binding Proteins That Defy Categorization According to Commonly Used Functional Criteria.
    Sakrikar S; Hackley RK; Martinez-Pastor M; Darnell CL; Vreugdenhil A; Schmid AK
    mBio; 2023 Apr; 14(2):e0344922. PubMed ID: 36779711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal genomics.
    Gaasterland T
    Curr Opin Microbiol; 1999 Oct; 2(5):542-7. PubMed ID: 10508726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enigmatic, ultrasmall, uncultivated Archaea.
    Baker BJ; Comolli LR; Dick GJ; Hauser LJ; Hyatt D; Dill BD; Land ML; Verberkmoes NC; Hettich RL; Banfield JF
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8806-11. PubMed ID: 20421484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer.
    Wolf YI; Makarova KS; Yutin N; Koonin EV
    Biol Direct; 2012 Dec; 7():46. PubMed ID: 23241446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs).
    Natale DA; Shankavaram UT; Galperin MY; Wolf YI; Aravind L; Koonin EV
    Genome Biol; 2000; 1(5):RESEARCH0009. PubMed ID: 11178258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and genomic analysis of transcription factors in archaeal genomes exemplifies their functional architecture and evolutionary origin.
    PĂ©rez-Rueda E; Janga SC
    Mol Biol Evol; 2010 Jun; 27(6):1449-59. PubMed ID: 20123795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ArchaeaTF: an integrated database of putative transcription factors in Archaea.
    Wu J; Wang S; Bai J; Shi L; Li D; Xu Z; Niu Y; Lu J; Bao Q
    Genomics; 2008 Jan; 91(1):102-7. PubMed ID: 18035520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Archaeal chromatin and transcription.
    Reeve JN
    Mol Microbiol; 2003 May; 48(3):587-98. PubMed ID: 12694606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms.
    Flores-Bautista E; Hernandez-Guerrero R; Huerta-Saquero A; Tenorio-Salgado S; Rivera-Gomez N; Romero A; Ibarra JA; Perez-Rueda E
    PLoS One; 2020; 15(8):e0237135. PubMed ID: 32822422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences.
    Brochier C; Forterre P; Gribaldo S
    BMC Evol Biol; 2005 Jun; 5():36. PubMed ID: 15932645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
    Spang A; Hatzenpichler R; Brochier-Armanet C; Rattei T; Tischler P; Spieck E; Streit W; Stahl DA; Wagner M; Schleper C
    Trends Microbiol; 2010 Aug; 18(8):331-40. PubMed ID: 20598889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group.
    Nunoura T; Takaki Y; Kakuta J; Nishi S; Sugahara J; Kazama H; Chee GJ; Hattori M; Kanai A; Atomi H; Takai K; Takami H
    Nucleic Acids Res; 2011 Apr; 39(8):3204-23. PubMed ID: 21169198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts.
    Makarova KS; Wolf YI; Karamycheva S; Zhang D; Aravind L; Koonin EV
    mBio; 2019 May; 10(3):. PubMed ID: 31064832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.