BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 17350938)

  • 1. A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Jul; 24(7):1447-57. PubMed ID: 17350938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?
    Koonin EV
    Biol Direct; 2006 Aug; 1():22. PubMed ID: 16907971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intron-rich ancestors.
    Roy SW
    Trends Genet; 2006 Sep; 22(9):468-71. PubMed ID: 16857287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widespread intron loss suggests retrotransposon activity in ancient apicomplexans.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Sep; 24(9):1926-33. PubMed ID: 17522085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New maximum likelihood estimators for eukaryotic intron evolution.
    Nguyen HD; Yoshihama M; Kenmochi N
    PLoS Comput Biol; 2005 Dec; 1(7):e79. PubMed ID: 16389300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Jan; 24(1):171-81. PubMed ID: 17065597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rates of intron loss and gain: implications for early eukaryotic evolution.
    Roy SW; Gilbert W
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5773-8. PubMed ID: 15827119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coevolution of genomic intron number and splice sites.
    Irimia M; Penny D; Roy SW
    Trends Genet; 2007 Jul; 23(7):321-5. PubMed ID: 17442445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conservation versus parallel gains in intron evolution.
    Sverdlov AV; Rogozin IB; Babenko VN; Koonin EV
    Nucleic Acids Res; 2005; 33(6):1741-8. PubMed ID: 15788746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of loss and gain of introns in the compact genomes of pufferfishes (Fugu and Tetraodon).
    Loh YH; Brenner S; Venkatesh B
    Mol Biol Evol; 2008 Mar; 25(3):526-35. PubMed ID: 18089580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high percentage of introns in human genes were present early in animal evolution: evidence from the basal metazoan Nematostella vectensis.
    Sullivan JC; Reitzel AM; Finnerty JR
    Genome Inform; 2006; 17(1):219-29. PubMed ID: 17503371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of spliceosomal introns: patterns, puzzles and progress.
    Roy SW; Gilbert W
    Nat Rev Genet; 2006 Mar; 7(3):211-21. PubMed ID: 16485020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Phaeodactylum genome reveals the evolutionary history of diatom genomes.
    Bowler C; Allen AE; Badger JH; Grimwood J; Jabbari K; Kuo A; Maheswari U; Martens C; Maumus F; Otillar RP; Rayko E; Salamov A; Vandepoele K; Beszteri B; Gruber A; Heijde M; Katinka M; Mock T; Valentin K; Verret F; Berges JA; Brownlee C; Cadoret JP; Chiovitti A; Choi CJ; Coesel S; De Martino A; Detter JC; Durkin C; Falciatore A; Fournet J; Haruta M; Huysman MJ; Jenkins BD; Jiroutova K; Jorgensen RE; Joubert Y; Kaplan A; Kröger N; Kroth PG; La Roche J; Lindquist E; Lommer M; Martin-Jézéquel V; Lopez PJ; Lucas S; Mangogna M; McGinnis K; Medlin LK; Montsant A; Oudot-Le Secq MP; Napoli C; Obornik M; Parker MS; Petit JL; Porcel BM; Poulsen N; Robison M; Rychlewski L; Rynearson TA; Schmutz J; Shapiro H; Siaut M; Stanley M; Sussman MR; Taylor AR; Vardi A; von Dassow P; Vyverman W; Willis A; Wyrwicz LS; Rokhsar DS; Weissenbach J; Armbrust EV; Green BR; Van de Peer Y; Grigoriev IV
    Nature; 2008 Nov; 456(7219):239-44. PubMed ID: 18923393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing back the expansion of introns in animal genomes.
    Kumar S; Hedges SB
    Cell; 2005 Dec; 123(7):1182-4. PubMed ID: 16377558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary gain of spliceosomal introns: sequence and phase preferences.
    Qiu WG; Schisler N; Stoltzfus A
    Mol Biol Evol; 2004 Jul; 21(7):1252-63. PubMed ID: 15014153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.
    Koonin EV; Csuros M; Rogozin IB
    Wiley Interdiscip Rev RNA; 2013; 4(1):93-105. PubMed ID: 23139082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia.
    Russell AG; Shutt TE; Watkins RF; Gray MW
    BMC Evol Biol; 2005 Aug; 5():45. PubMed ID: 16109161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion.
    Sverdlov AV; Babenko VN; Rogozin IB; Koonin EV
    Gene; 2004 Aug; 338(1):85-91. PubMed ID: 15302409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biology of intron gain and loss.
    Jeffares DC; Mourier T; Penny D
    Trends Genet; 2006 Jan; 22(1):16-22. PubMed ID: 16290250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.