These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17351006)

  • 1. Different dark conformations function in color-sensitive photosignaling by the sensory rhodopsin I-HtrI complex.
    Sasaki J; Phillips BJ; Chen X; Van Eps N; Tsai AL; Hubbell WL; Spudich JL
    Biophys J; 2007 Jun; 92(11):4045-53. PubMed ID: 17351006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism.
    Jung KH; Spudich JL
    J Bacteriol; 1998 Apr; 180(8):2033-42. PubMed ID: 9555883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FT-IR difference spectroscopy elucidates crucial interactions of sensory rhodopsin I with the cognate transducer HtrI.
    Mironova OS; Budyak IL; Büldt G; Schlesinger R; Heberle J
    Biochemistry; 2007 Aug; 46(33):9399-405. PubMed ID: 17655327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes.
    Sineshchekov OA; Sasaki J; Wang J; Spudich JL
    Biochemistry; 2010 Aug; 49(31):6696-704. PubMed ID: 20590098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I.
    Jung KH; Spudich JL
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6557-61. PubMed ID: 8692855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53.
    Radu I; Budyak IL; Hoomann T; Kim YJ; Engelhard M; Labahn J; Büldt G; Heberle J; Schlesinger R
    Biophys Chem; 2010 Aug; 150(1-3):23-8. PubMed ID: 20303644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I.
    Zhang XN; Spudich JL
    J Biol Chem; 1998 Jul; 273(31):19722-8. PubMed ID: 9677402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76.
    Furutani Y; Takahashi H; Sasaki J; Sudo Y; Spudich JL; Kandori H
    Biochemistry; 2008 Mar; 47(9):2875-83. PubMed ID: 18220358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I.
    Jung KH; Spudich EN; Dag P; Spudich JL
    Biochemistry; 1999 Oct; 38(40):13270-4. PubMed ID: 10529200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cytoplasmic domain is required for the functional interaction of SRI and HtrI in archaeal signal transduction.
    Krah M; Marwan W; Oesterhelt D
    FEBS Lett; 1994 Oct; 353(3):301-4. PubMed ID: 7957880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototaxis of Halobacterium salinarium requires a signalling complex of sensory rhodopsin I and its methyl-accepting transducer HtrI.
    Krah M; Marwan W; Verméglio A; Oesterhelt D
    EMBO J; 1994 May; 13(9):2150-5. PubMed ID: 8187768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Schiff base connectivity switch in sensory rhodopsin signaling.
    Sineshchekov OA; Sasaki J; Phillips BJ; Spudich JL
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16159-64. PubMed ID: 18852467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices.
    Zhang XN; Zhu J; Spudich JL
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):857-62. PubMed ID: 9927658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I.
    Sasaki J; Takahashi H; Furutani Y; Sineshchekov OA; Spudich JL; Kandori H
    Biochemistry; 2014 Sep; 53(37):5923-9. PubMed ID: 25162914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion mapping of the sites on the HtrI transducer for sensory rhodopsin I interaction.
    Perazzona B; Spudich EN; Spudich JL
    J Bacteriol; 1996 Nov; 178(22):6475-8. PubMed ID: 8932303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five residues in the HtrI transducer membrane-proximal domain close the cytoplasmic proton-conducting channel of sensory rhodopsin I.
    Chen X; Spudich JL
    J Biol Chem; 2004 Oct; 279(41):42964-9. PubMed ID: 15252049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of photosignaling by archaeal sensory rhodopsins.
    Hoff WD; Jung KH; Spudich JL
    Annu Rev Biophys Biomol Struct; 1997; 26():223-58. PubMed ID: 9241419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicolored protein conformation states in the photocycle of transducer-free sensory rhodopsin-I.
    Szundi I; Swartz TE; Bogomolni RA
    Biophys J; 2001 Jan; 80(1):469-79. PubMed ID: 11159417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground state structure of D75N mutant of sensory rhodopsin II in complex with its cognate transducer.
    Ishchenko A; Round E; Borshchevskiy V; Grudinin S; Gushchin I; Klare JP; Balandin T; Remeeva A; Engelhard M; Büldt G; Gordeliy V
    J Photochem Photobiol B; 2013 Jun; 123():55-8. PubMed ID: 23619282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of light-induced conformational changes of Natronomonas pharaonis sensory rhodopsin II by time resolved electron paramagnetic resonance spectroscopy.
    Bordignon E; Klare JP; Holterhues J; Martell S; Krasnaberski A; Engelhard M; Steinhoff HJ
    Photochem Photobiol; 2007; 83(2):263-72. PubMed ID: 16961434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.