These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 17351057)
1. A genomic approach to suberin biosynthesis and cork differentiation. Soler M; Serra O; Molinas M; Huguet G; Fluch S; Figueras M Plant Physiol; 2007 May; 144(1):419-31. PubMed ID: 17351057 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation. Fernández-Piñán S; Boher P; Soler M; Figueras M; Serra O Sci Rep; 2021 Jun; 11(1):12053. PubMed ID: 34103550 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of Quercus suber MYB1, a transcription factor up-regulated in cork tissues. Almeida T; Menéndez E; Capote T; Ribeiro T; Santos C; Gonçalves S J Plant Physiol; 2013 Jan; 170(2):172-8. PubMed ID: 23218545 [TBL] [Abstract][Full Text] [Related]
4. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). Capote T; Barbosa P; Usié A; Ramos AM; Inácio V; Ordás R; Gonçalves S; Morais-Cecílio L BMC Plant Biol; 2018 Sep; 18(1):198. PubMed ID: 30223777 [TBL] [Abstract][Full Text] [Related]
5. A comparative transcriptomic approach to understanding the formation of cork. Boher P; Soler M; Sánchez A; Hoede C; Noirot C; Paiva JAP; Serra O; Figueras M Plant Mol Biol; 2018 Jan; 96(1-2):103-118. PubMed ID: 29143299 [TBL] [Abstract][Full Text] [Related]
6. Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak. Lopes ST; Sobral D; Costa B; Perdiguero P; Chaves I; Costa A; Miguel CM Tree Physiol; 2020 Feb; 40(2):129-141. PubMed ID: 31860724 [TBL] [Abstract][Full Text] [Related]
7. Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. Chang E; Guo W; Chen J; Zhang J; Jia Z; Tschaplinski TJ; Yang X; Jiang Z; Liu J Plant Sci; 2023 Dec; 337():111874. PubMed ID: 37742724 [TBL] [Abstract][Full Text] [Related]
8. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Rains MK; Gardiyehewa de Silva ND; Molina I Tree Physiol; 2018 Mar; 38(3):340-361. PubMed ID: 28575526 [TBL] [Abstract][Full Text] [Related]
9. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR. Soler M; Serra O; Molinas M; García-Berthou E; Caritat A; Figueras M Tree Physiol; 2008 May; 28(5):743-51. PubMed ID: 18316306 [TBL] [Abstract][Full Text] [Related]
10. The first multi-tissue genome-scale metabolic model of a woody plant highlights suberin biosynthesis pathways in Quercus suber. Cunha E; Silva M; Chaves I; Demirci H; Lagoa DR; Lima D; Rocha M; Rocha I; Dias O PLoS Comput Biol; 2023 Sep; 19(9):e1011499. PubMed ID: 37729340 [TBL] [Abstract][Full Text] [Related]
11. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation. Armendariz I; López de Heredia U; Soler M; Puigdemont A; Ruiz MM; Jové P; Soto Á; Serra O; Figueras M BMC Plant Biol; 2024 Jun; 24(1):488. PubMed ID: 38825683 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection. Teixeira RT; Fortes AM; Bai H; Pinheiro C; Pereira H Planta; 2018 Feb; 247(2):317-338. PubMed ID: 28988391 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Costa ML; Sobral R; Ribeiro Costa MM; Amorim MI; Coimbra S Ann Bot; 2015 Jan; 115(1):81-92. PubMed ID: 25452249 [TBL] [Abstract][Full Text] [Related]
14. Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue. Teixeira RT; Fortes AM; Pinheiro C; Pereira H J Exp Bot; 2014 Sep; 65(17):4887-905. PubMed ID: 24958897 [TBL] [Abstract][Full Text] [Related]
15. Spatiotemporal development of suberized barriers in cork oak taproots. Leal AR; Sapeta H; Beeckman T; Barros PM; Oliveira MM Tree Physiol; 2022 Jun; 42(6):1269-1285. PubMed ID: 34970982 [TBL] [Abstract][Full Text] [Related]
16. Allocation of 14C assimilated in late spring to tissue and biochemical stem components of cork oak (Quercus suber L.) over the seasons. Aguado PL; Curt MD; Pereira H; Fernández J Tree Physiol; 2012 Mar; 32(3):313-25. PubMed ID: 22418688 [TBL] [Abstract][Full Text] [Related]
17. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin. Verdaguer R; Soler M; Serra O; Garrote A; Fernández S; Company-Arumí D; Anticó E; Molinas M; Figueras M J Exp Bot; 2016 Oct; 67(18):5415-5427. PubMed ID: 27520790 [TBL] [Abstract][Full Text] [Related]
18. Anatomy and development of the endodermis and phellem of Quercus suber L. roots. Machado A; Pereira H; Teixeira RT Microsc Microanal; 2013 Jun; 19(3):525-34. PubMed ID: 23551860 [TBL] [Abstract][Full Text] [Related]
19. Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork. Busta L; Serra O; Kim OT; Molinas M; Peré-Fossoul I; Figueras M; Jetter R Sci Rep; 2020 May; 10(1):8011. PubMed ID: 32415159 [TBL] [Abstract][Full Text] [Related]
20. A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation. Soler M; Serra O; Fluch S; Molinas M; Figueras M Planta; 2011 May; 233(5):933-45. PubMed ID: 21249504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]