These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 17351427)
1. Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration--initial results. Stadlbauer A; Nimsky C; Buslei R; Pinker K; Gruber S; Hammen T; Buchfelder M; Ganslandt O Invest Radiol; 2007 Apr; 42(4):218-23. PubMed ID: 17351427 [TBL] [Abstract][Full Text] [Related]
2. Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Stadlbauer A; Gruber S; Nimsky C; Fahlbusch R; Hammen T; Buslei R; Tomandl B; Moser E; Ganslandt O Radiology; 2006 Mar; 238(3):958-69. PubMed ID: 16424238 [TBL] [Abstract][Full Text] [Related]
3. Diagnostic value of proton magnetic resonance spectroscopy in the noninvasive grading of solid gliomas: comparison of maximum and mean choline values. Senft C; Hattingen E; Pilatus U; Franz K; Schänzer A; Lanfermann H; Seifert V; Gasser T Neurosurgery; 2009 Nov; 65(5):908-13; discussion 913. PubMed ID: 19834403 [TBL] [Abstract][Full Text] [Related]
4. Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Server A; Kulle B; Gadmar ØB; Josefsen R; Kumar T; Nakstad PH Eur J Radiol; 2011 Nov; 80(2):462-70. PubMed ID: 20708868 [TBL] [Abstract][Full Text] [Related]
5. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. Stadlbauer A; Prante O; Nimsky C; Salomonowitz E; Buchfelder M; Kuwert T; Linke R; Ganslandt O J Nucl Med; 2008 May; 49(5):721-9. PubMed ID: 18413402 [TBL] [Abstract][Full Text] [Related]
6. Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. Stadlbauer A; Moser E; Gruber S; Buslei R; Nimsky C; Fahlbusch R; Ganslandt O Neuroimage; 2004 Oct; 23(2):454-61. PubMed ID: 15488395 [TBL] [Abstract][Full Text] [Related]
7. Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Laprie A; Pirzkall A; Haas-Kogan DA; Cha S; Banerjee A; Le TP; Lu Y; Nelson S; McKnight TR Int J Radiat Oncol Biol Phys; 2005 May; 62(1):20-31. PubMed ID: 15850898 [TBL] [Abstract][Full Text] [Related]
9. [Application of (1)H MR spectroscopic imaging in radiation oncology: choline as a marker for determining the relative probability of tumor progression after radiation of glial brain tumors]. Lichy MP; Bachert P; Hamprecht F; Weber MA; Debus J; Schulz-Ertner D; Schlemmer HP; Kauczor HU Rofo; 2006 Jun; 178(6):627-33. PubMed ID: 16703499 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance spectroscopic imaging for visualization of the infiltration zone of glioma. Stadlbauer A; Buchfelder M; Doelken MT; Hammen T; Ganslandt O Cent Eur Neurosurg; 2011 May; 72(2):63-9. PubMed ID: 20635312 [TBL] [Abstract][Full Text] [Related]
11. In the assessment of supratentorial glioma grade: the combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging. Zou QG; Xu HB; Liu F; Guo W; Kong XC; Wu Y Clin Radiol; 2011 Oct; 66(10):953-60. PubMed ID: 21663899 [TBL] [Abstract][Full Text] [Related]
12. [Value of proton magnetic resonance spectroscopy with two-dimensional chemical-shift imaging in evaluating brain gliomas]. Zhou GF; Wang XY; Gong CG; Liu F; Wang RW Nan Fang Yi Ke Da Xue Xue Bao; 2008 Aug; 28(8):1342-4. PubMed ID: 18753055 [TBL] [Abstract][Full Text] [Related]
13. Manually adjusted versus vendor-preset definition of metabolite boundaries impact on proton metabolite ratios. Petrou M; Sundgren PC; Pang Y; Rohrer S; Foerster B; Chenevert TL Acad Radiol; 2007 Mar; 14(3):340-3. PubMed ID: 17307667 [TBL] [Abstract][Full Text] [Related]
14. Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Gruber S; Pinker K; Riederer F; Chmelík M; Stadlbauer A; Bittsanský M; Mlynárik V; Frey R; Serles W; Bodamer O; Moser E Eur J Radiol; 2008 Nov; 68(2):320-7. PubMed ID: 17964104 [TBL] [Abstract][Full Text] [Related]
15. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Zeng QS; Li CF; Liu H; Zhen JH; Feng DC Int J Radiat Oncol Biol Phys; 2007 May; 68(1):151-8. PubMed ID: 17289287 [TBL] [Abstract][Full Text] [Related]
16. Correlation between choline and MIB-1 index in human gliomas. A quantitative in proton MR spectroscopy study. Matsumura A; Isobe T; Anno I; Takano S; Kawamura H J Clin Neurosci; 2005 May; 12(4):416-20. PubMed ID: 15925772 [TBL] [Abstract][Full Text] [Related]
18. Proton magnetic resonance spectroscopy of normal human brain and glioma: a quantitative in vivo study. Tong ZY; Toshiaki Y; Wang YJ Chin Med J (Engl); 2005 Aug; 118(15):1251-7. PubMed ID: 16117877 [TBL] [Abstract][Full Text] [Related]
19. Proton magnetic resonance spectroscopic findings of cerebral fat embolism induced by triolein emulsion in cats. Baik SK; Kim YW; Kim HJ; Lee JW; Cho BM; Kim DH; Choi SH; Lee SH; Chang KH Acta Radiol; 2008 Dec; 49(10):1174-81. PubMed ID: 19031181 [TBL] [Abstract][Full Text] [Related]
20. 1H-MRSI of prostate cancer: the relationship between metabolite ratio and tumor proliferation. Wang XZ; Wang B; Gao ZQ; Liu JG; Liu ZQ; Niu QL; Sun ZK; Yuan YX Eur J Radiol; 2010 Feb; 73(2):345-51. PubMed ID: 19070978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]