These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 17351629)
1. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Fukunaga R; Yokoyama S Nat Struct Mol Biol; 2007 Apr; 14(4):272-9. PubMed ID: 17351629 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus. Fukunaga R; Yokoyama S J Mol Biol; 2007 Jun; 370(1):128-41. PubMed ID: 17512006 [TBL] [Abstract][Full Text] [Related]
4. RNA-dependent cysteine biosynthesis in archaea. Sauerwald A; Zhu W; Major TA; Roy H; Palioura S; Jahn D; Whitman WB; Yates JR; Ibba M; Söll D Science; 2005 Mar; 307(5717):1969-72. PubMed ID: 15790858 [TBL] [Abstract][Full Text] [Related]
5. Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase. Kamtekar S; Hohn MJ; Park HS; Schnitzbauer M; Sauerwald A; Söll D; Steitz TA Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2620-5. PubMed ID: 17301225 [TBL] [Abstract][Full Text] [Related]
6. Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea. Liu Y; Nakamura A; Nakazawa Y; Asano N; Ford KA; Hohn MJ; Tanaka I; Yao M; Söll D Proc Natl Acad Sci U S A; 2014 Jul; 111(29):10520-5. PubMed ID: 25002468 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for tRNA-dependent cysteine biosynthesis. Chen M; Kato K; Kubo Y; Tanaka Y; Liu Y; Long F; Whitman WB; Lill P; Gatsogiannis C; Raunser S; Shimizu N; Shinoda A; Nakamura A; Tanaka I; Yao M Nat Commun; 2017 Nov; 8(1):1521. PubMed ID: 29142195 [TBL] [Abstract][Full Text] [Related]
8. Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNA(Cys) synthesis. Chen M; Nakazawa Y; Kubo Y; Asano N; Kato K; Tanaka I; Yao M Acta Crystallogr F Struct Biol Commun; 2016 Jul; 72(Pt 7):569-72. PubMed ID: 27380375 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine. Chiba S; Itoh Y; Sekine S; Yokoyama S Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242 [TBL] [Abstract][Full Text] [Related]
10. RNA recognition based on a pair of tertiary hydrogen interaction. Hou YM Nucleic Acids Symp Ser; 1995; (33):172-5. PubMed ID: 8643362 [TBL] [Abstract][Full Text] [Related]
11. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity. Zhang CM; Hou YM Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062 [TBL] [Abstract][Full Text] [Related]
12. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. Srinivasan G; James CM; Krzycki JA Science; 2002 May; 296(5572):1459-62. PubMed ID: 12029131 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. LaRonde-LeBlanc N; Wlodawer A Structure; 2004 Sep; 12(9):1585-94. PubMed ID: 15341724 [TBL] [Abstract][Full Text] [Related]
14. Prevention of mis-aminoacylation of a dual-specificity aminoacyl-tRNA synthetase. Lipman RS; Wang J; Sowers KR; Hou YM J Mol Biol; 2002 Feb; 315(5):943-9. PubMed ID: 11827467 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for tRNA-dependent amidotransferase function. Schmitt E; Panvert M; Blanquet S; Mechulam Y Structure; 2005 Oct; 13(10):1421-33. PubMed ID: 16216574 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. Blaise M; Olieric V; Sauter C; Lorber B; Roy B; Karmakar S; Banerjee R; Becker HD; Kern D J Mol Biol; 2008 Sep; 381(5):1224-37. PubMed ID: 18602926 [TBL] [Abstract][Full Text] [Related]
17. Phosphoserine aminoacylation of tRNA bearing an unnatural base anticodon. Fukunaga R; Harada Y; Hirao I; Yokoyama S Biochem Biophys Res Commun; 2008 Aug; 372(3):480-5. PubMed ID: 18503748 [TBL] [Abstract][Full Text] [Related]
18. Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis. Goto-Ito S; Ishii R; Ito T; Shibata R; Fusatomi E; Sekine SI; Bessho Y; Yokoyama S Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1059-68. PubMed ID: 17881823 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional structure of methionyl-tRNA synthetase from Pyrococcus abyssi. Crepin T; Schmitt E; Blanquet S; Mechulam Y Biochemistry; 2004 Mar; 43(9):2635-44. PubMed ID: 14992601 [TBL] [Abstract][Full Text] [Related]
20. Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys). Zhang CM; Liu C; Slater S; Hou YM Nat Struct Mol Biol; 2008 May; 15(5):507-14. PubMed ID: 18425141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]