These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 17351787)
21. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775 [TBL] [Abstract][Full Text] [Related]
22. Heterologous expression of maize (Zea mays L.) Mir1 cysteine proteinase in eukaryotic and prokaryotic expression systems. Pechan T; Ma PW; Luthe DS Protein Expr Purif; 2004 Mar; 34(1):134-41. PubMed ID: 14766309 [TBL] [Abstract][Full Text] [Related]
23. Foliar herbivory triggers local and long distance defense responses in maize. Ankala A; Kelley RY; Rowe DE; Williams WP; Luthe DS Plant Sci; 2013 Feb; 199-200():103-12. PubMed ID: 23265323 [TBL] [Abstract][Full Text] [Related]
24. Rice sucrose transporter1 (OsSUT1) up-regulation in xylem parenchyma is caused by aphid feeding on rice leaf blade vascular bundles. Ibraheem O; Botha CE; Bradley G; Dealtry G; Roux S Plant Biol (Stuttg); 2014 Jul; 16(4):783-91. PubMed ID: 24206428 [TBL] [Abstract][Full Text] [Related]
25. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance. Erb M; Robert CA; Marti G; Lu J; Doyen GR; Villard N; Barrière Y; French BW; Wolfender JL; Turlings TC; Gershenzon J Plant Physiol; 2015 Dec; 169(4):2884-94. PubMed ID: 26430225 [TBL] [Abstract][Full Text] [Related]
26. Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. Yan J; Lipka AE; Schmelz EA; Buckler ES; Jander G J Exp Bot; 2015 Feb; 66(2):593-602. PubMed ID: 25271262 [TBL] [Abstract][Full Text] [Related]
27. The tie-dyed pathway promotes symplastic trafficking in the phloem. Baker RF; Slewinski TL; Braun DM Plant Signal Behav; 2013 Jun; 8(6):e24540. PubMed ID: 23603956 [TBL] [Abstract][Full Text] [Related]
28. A maize line resistant to herbivory constitutively releases (E) -beta-caryophyllene. Smith WE; Shivaji R; Williams WP; Luthe DS; Sandoya GV; Smith CL; Sparks DL; Brown AE J Econ Entomol; 2012 Feb; 105(1):120-8. PubMed ID: 22420263 [TBL] [Abstract][Full Text] [Related]
29. Caterpillar attack triggers accumulation of the toxic maize protein RIP2. Chuang WP; Herde M; Ray S; Castano-Duque L; Howe GA; Luthe DS New Phytol; 2014 Feb; 201(3):928-939. PubMed ID: 24304477 [TBL] [Abstract][Full Text] [Related]
30. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory. Han Y; Taylor EB; Luthe D J Chem Ecol; 2021 Jul; 47(7):689-706. PubMed ID: 34056671 [TBL] [Abstract][Full Text] [Related]
31. Plant iron acquisition strategy exploited by an insect herbivore. Hu L; Mateo P; Ye M; Zhang X; Berset JD; Handrick V; Radisch D; Grabe V; Köllner TG; Gershenzon J; Robert CAM; Erb M Science; 2018 Aug; 361(6403):694-697. PubMed ID: 30115808 [TBL] [Abstract][Full Text] [Related]
32. Relative concentration of Cry1A in maize leaves and cotton bolls with diverse chlorophyll content and corresponding larval development of fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) on maize whorl leaf profiles. Abel CA; Adamczyk JJ J Econ Entomol; 2004 Oct; 97(5):1737-44. PubMed ID: 15568367 [TBL] [Abstract][Full Text] [Related]
33. Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation. Muller B; Bourdais G; Reidy B; Bencivenni C; Massonneau A; Condamine P; Rolland G; Conéjéro G; Rogowsky P; Tardieu F Plant Physiol; 2007 Jan; 143(1):278-90. PubMed ID: 17098857 [TBL] [Abstract][Full Text] [Related]
34. Vascular tissue-specific gene expression of xylem sap glycine-rich proteins in root and their localization in the walls of metaxylem vessels in cucumber. Sakuta C; Satoh S Plant Cell Physiol; 2000 May; 41(5):627-38. PubMed ID: 10929946 [TBL] [Abstract][Full Text] [Related]
35. Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. Köllner TG; Lenk C; Schnee C; Köpke S; Lindemann P; Gershenzon J; Degenhardt J BMC Plant Biol; 2013 Jan; 13():15. PubMed ID: 23363415 [TBL] [Abstract][Full Text] [Related]
36. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field. Guo J; Qi J; He K; Wu J; Bai S; Zhang T; Zhao J; Wang Z Plant Biotechnol J; 2019 Jan; 17(1):88-102. PubMed ID: 29754404 [TBL] [Abstract][Full Text] [Related]
37. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. Zhang Y; Paschold A; Marcon C; Liu S; Tai H; Nestler J; Yeh CT; Opitz N; Lanz C; Schnable PS; Hochholdinger F J Exp Bot; 2014 Sep; 65(17):4919-30. PubMed ID: 24928984 [TBL] [Abstract][Full Text] [Related]
38. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Martin A; Lee J; Kichey T; Gerentes D; Zivy M; Tatout C; Dubois F; Balliau T; Valot B; Davanture M; Tercé-Laforgue T; Quilleré I; Coque M; Gallais A; Gonzalez-Moro MB; Bethencourt L; Habash DZ; Lea PJ; Charcosset A; Perez P; Murigneux A; Sakakibara H; Edwards KJ; Hirel B Plant Cell; 2006 Nov; 18(11):3252-74. PubMed ID: 17138698 [TBL] [Abstract][Full Text] [Related]
39. Identification and characterization of MOR-CP, a cysteine protease induced by ozone and developmental senescence in maize (Zea mays L.) leaves. Ahmad R; Zuily-Fodil Y; Passaquet C; Bethenod O; Roche R; Repellin A Chemosphere; 2014 Aug; 108():245-50. PubMed ID: 24594488 [TBL] [Abstract][Full Text] [Related]