BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 17353351)

  • 1. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
    Bompadre SG; Li M; Hwang TC
    J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.
    Miki H; Zhou Z; Li M; Hwang TC; Bompadre SG
    J Biol Chem; 2010 Jun; 285(26):19967-75. PubMed ID: 20406820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glycine residues G551 and G1349 within the ATP-binding cassette signature motifs play critical roles in the activation and inhibition of cystic fibrosis transmembrane conductance regulator channels by phloxine B.
    Melin P; Norez C; Callebaut I; Becq F
    J Membr Biol; 2005 Dec; 208(3):203-12. PubMed ID: 16604470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Cai Z; Taddei A; Sheppard DN
    J Biol Chem; 2006 Jan; 281(4):1970-7. PubMed ID: 16311240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein.
    Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F
    Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
    Jih KY; Li M; Hwang TC; Bompadre SG
    J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations.
    Okeyo G; Wang W; Wei S; Kirk KL
    J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single amino acid substitution in CFTR converts ATP to an inhibitory ligand.
    Lin WY; Jih KY; Hwang TC
    J Gen Physiol; 2014 Oct; 144(4):311-20. PubMed ID: 25225552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and pharmacological characterization of the N1303K mutant CFTR.
    DeStefano S; Gees M; Hwang TC
    J Cyst Fibros; 2018 Sep; 17(5):573-581. PubMed ID: 29887518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.
    Jih KY; Hwang TC
    Proc Natl Acad Sci U S A; 2013 Mar; 110(11):4404-9. PubMed ID: 23440202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations at the signature sequence of CFTR create a Cd(2+)-gated chloride channel.
    Wang X; Bompadre SG; Li M; Hwang TC
    J Gen Physiol; 2009 Jan; 133(1):69-77. PubMed ID: 19114635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.
    Bompadre SG; Hwang TC
    Sheng Li Xue Bao; 2007 Aug; 59(4):431-42. PubMed ID: 17700963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revertant mutants modify, but do not rescue, the gating defect of the cystic fibrosis mutant G551D-CFTR.
    Xu Z; Pissarra LS; Farinha CM; Liu J; Cai Z; Thibodeau PH; Amaral MD; Sheppard DN
    J Physiol; 2014 May; 592(9):1931-47. PubMed ID: 24591578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain.
    Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G551D mutation impairs PKA-dependent activation of CFTR channel that can be restored by novel GOF mutations.
    Wang W; Fu L; Liu Z; Wen H; Rab A; Hong JS; Kirk KL; Rowe SM
    Am J Physiol Lung Cell Mol Physiol; 2020 Nov; 319(5):L770-L785. PubMed ID: 32877225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.