These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 17353953)
1. Mechanistic studies on oxidation of L-ascorbic acid by an oxo-bridged diiron complex in aqueous acidic media. Bhattacharyya J; Das S; Mukhopadhyay S Dalton Trans; 2007 Mar; (12):1214-20. PubMed ID: 17353953 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic studies on oxidation of hydrogen peroxide by an oxo-bridged diiron complex in aqueous acidic media. Das S; Bhattacharyya J; Mukhopadhyay S Dalton Trans; 2008 Dec; (46):6634-40. PubMed ID: 19030627 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic studies on oxidation of hydrazine by a mu-oxo diiron(III,III) complex in aqueous acidic media-proton coupled electron transfer. Bhattacharyya J; Dutta K; Mukhopadhyay S Dalton Trans; 2004 Sep; (18):2910-7. PubMed ID: 15349166 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic studies on oxidation of nitrite by a {Mn3O4}4+ core in aqueous acidic media. Das S; Mukhopadhyay S Dalton Trans; 2007 Jun; (22):2321-7. PubMed ID: 17534493 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic studies on the oxidation of ascorbic acid and hydroquinone by a {Mn4O6}4+ core in aqueous media. Chakraborty M; Singh NJ; Mandal PC; Das S; Mukhopadhyay S J Phys Chem A; 2011 May; 115(19):4882-93. PubMed ID: 21517065 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and mechanism of the oxidation of hydroxylamine by a {Mn3O4}4+ core in aqueous acidic media. Mandal PC; Chakraborty M; Das S; Estarellas C; Quiñonero D; Frontera A; Mukhopadhyay S Dalton Trans; 2011 Oct; 40(37):9571-9. PubMed ID: 21850328 [TBL] [Abstract][Full Text] [Related]
7. Speciation of ferric phenoxide intermediates during the reduction of iron(III)-μ-oxo dimers by hydroquinone. Kerber WD; Perez KA; Ren C; Siegler MA Inorg Chem; 2014 Nov; 53(21):11507-16. PubMed ID: 25322447 [TBL] [Abstract][Full Text] [Related]
8. Reaction of (mu-oxo)diiron(III) core with CO2 in N-methylimidazole: formation of mono(mu-carboxylato)(mu-oxo)diiron(III) complexes with N-methylimidazole as ligands. Marlin DS; Olmstead MM; Mascharak PK Inorg Chem; 2003 Mar; 42(5):1681-7. PubMed ID: 12611539 [TBL] [Abstract][Full Text] [Related]
9. Potent anticancer activity of photo-activated oxo-bridged diiron(III) complexes. Chanu SB; Banerjee S; Roy M Eur J Med Chem; 2017 Jan; 125():816-824. PubMed ID: 27750199 [TBL] [Abstract][Full Text] [Related]
10. Brønsted acid-promoted C-H bond cleavage via electron transfer from toluene derivatives to a protonated nonheme iron(IV)-oxo complex with no kinetic isotope effect. Park J; Lee YM; Nam W; Fukuzumi S J Am Chem Soc; 2013 Apr; 135(13):5052-61. PubMed ID: 23528016 [TBL] [Abstract][Full Text] [Related]
11. Catalase-peroxidase activity of iron(III)-TAML activators of hydrogen peroxide. Ghosh A; Mitchell DA; Chanda A; Ryabov AD; Popescu DL; Upham EC; Collins GJ; Collins TJ J Am Chem Soc; 2008 Nov; 130(45):15116-26. PubMed ID: 18928252 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid. Jung CH; Wells WW Arch Biochem Biophys; 1998 Jul; 355(1):9-14. PubMed ID: 9647661 [TBL] [Abstract][Full Text] [Related]
14. The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems. Pettine M; Gennari F; Campanella L Chemosphere; 2013 Jan; 90(2):245-50. PubMed ID: 22858257 [TBL] [Abstract][Full Text] [Related]
15. Reduction of vanadium(V) by L-ascorbic acid at low and neutral pH: kinetic, mechanistic, and spectroscopic characterization. Wilkins PC; Johnson MD; Holder AA; Crans DC Inorg Chem; 2006 Feb; 45(4):1471-9. PubMed ID: 16471958 [TBL] [Abstract][Full Text] [Related]
16. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant. Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169 [TBL] [Abstract][Full Text] [Related]
17. Electron Transfer Reactivity of the Aqueous Iron(IV)-Oxo Complex. Outer-Sphere vs Proton-Coupled Electron Transfer. Bataineh H; Pestovsky O; Bakac A Inorg Chem; 2016 Jul; 55(13):6719-24. PubMed ID: 27320290 [TBL] [Abstract][Full Text] [Related]
18. Kinetics and mechanism of the oxidation of ascorbic acid in aqueous solutions by a trans-dioxoruthenium(VI) complex. Wang YN; Lau KC; Lam WW; Man WL; Leung CF; Lau TC Inorg Chem; 2009 Jan; 48(1):400-6. PubMed ID: 19061342 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and mechanism of the Co(II)-assisted oxidation of L-ascorbic acid by dioxygen and nitrite in aqueous solution. Vlasova EA; Hessenauer-Ilicheva N; Salnikov DS; Kudrik EV; Makarov SV; van Eldik R Dalton Trans; 2009 Dec; (47):10541-9. PubMed ID: 20023878 [TBL] [Abstract][Full Text] [Related]
20. Proton-promoted oxygen atom transfer vs proton-coupled electron transfer of a non-heme iron(IV)-oxo complex. Park J; Morimoto Y; Lee YM; Nam W; Fukuzumi S J Am Chem Soc; 2012 Feb; 134(8):3903-11. PubMed ID: 22339209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]