These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 1735439)
1. Dissection of the ribonuclease T1 subsite. The transesterification kinetics of Asn36Ala and Asn98Ala ribonuclease T1 for minimal dinucleoside phosphates. Steyaert J; Haikal AF; Stanssens P; Wyns L Eur J Biochem; 1992 Feb; 203(3):551-5. PubMed ID: 1735439 [TBL] [Abstract][Full Text] [Related]
2. Subsite interactions of ribonuclease T1: Asn36 and Asn98 accelerate GpN transesterification through interactions with the leaving nucleoside N. Steyaert J; Haikal AF; Wyns L; Stanssens P Biochemistry; 1991 Sep; 30(35):8666-70. PubMed ID: 1653603 [TBL] [Abstract][Full Text] [Related]
3. Subsite interactions of ribonuclease T1: viscosity effects indicate that the rate-limiting step of GpN transesterification depends on the nature of N. Steyaert J; Wyns L; Stanssens P Biochemistry; 1991 Sep; 30(35):8661-5. PubMed ID: 1909570 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the functional interplay between the primary site and the subsite of RNase T1: kinetic analysis of single and multiple mutants for modified substrates. Steyaert J; Haikal AF; Wyns L Proteins; 1994 Apr; 18(4):318-23. PubMed ID: 8208724 [TBL] [Abstract][Full Text] [Related]
5. Quantitative analysis of the contribution of Glu46 and Asn98 to the guanosine specificity of ribonuclease T1. Steyaert J; Opsomer C; Wyns L; Stanssens P Biochemistry; 1991 Jan; 30(2):494-9. PubMed ID: 1899029 [TBL] [Abstract][Full Text] [Related]
6. Kinetic studies of guanine recognition and a phosphate group subsite on ribonuclease T1 using substitution mutants at Glu46 and Lys41. Jo Chitester B; Walz FG Arch Biochem Biophys; 2002 Oct; 406(1):73-7. PubMed ID: 12234492 [TBL] [Abstract][Full Text] [Related]
7. A decade of protein engineering on ribonuclease T1--atomic dissection of the enzyme-substrate interactions. Steyaert J Eur J Biochem; 1997 Jul; 247(1):1-11. PubMed ID: 9249002 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of ribonuclease Ms (as a ribonuclease T1 homologue) complexed with a guanylyl-3',5'-cytidine analogue. Nonaka T; Nakamura KT; Uesugi S; Ikehara M; Irie M; Mitsui Y Biochemistry; 1993 Nov; 32(44):11825-37. PubMed ID: 8218254 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis. Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539 [TBL] [Abstract][Full Text] [Related]
10. Role of histidine-40 in ribonuclease T1 catalysis: three-dimensionalstructures of the partially active His40Lys mutant. Zegers I; Verhelst P; Choe HW; Steyaert J; Heinemann U; Saenger W; Wyns L Biochemistry; 1992 Nov; 31(46):11317-25. PubMed ID: 1445870 [TBL] [Abstract][Full Text] [Related]
11. Crystallographic study of Glu58Ala RNase T1 x 2'-guanosine monophosphate at 1.9-A resolution. Pletinckx J; Steyaert J; Zegers I; Choe HW; Heinemann U; Wyns L Biochemistry; 1994 Feb; 33(7):1654-62. PubMed ID: 7906540 [TBL] [Abstract][Full Text] [Related]
12. A two-binding-site kinetic model for the ribonuclease-T1-catalysed transesterification of dinucleoside phosphate substrates. Steyaert J; Engelborghs Y Eur J Biochem; 1995 Oct; 233(1):140-4. PubMed ID: 7588737 [TBL] [Abstract][Full Text] [Related]
13. A catalytic function for the structurally conserved residue Phe 100 of ribonuclease T1. Doumen J; Gonciarz M; Zegers I; Loris R; Wyns L; Steyaert J Protein Sci; 1996 Aug; 5(8):1523-30. PubMed ID: 8844843 [TBL] [Abstract][Full Text] [Related]
14. Reverse action of ribonuclease T1 in frozen aqueous systems. Haensler M; Hahn U; Jakubke HD Biol Chem; 1997 Feb; 378(2):115-8. PubMed ID: 9088540 [TBL] [Abstract][Full Text] [Related]
15. Trp59 to Tyr substitution enhances the catalytic activity of RNase T1 and of the Tyr to Trp variants in positions 24, 42 and 45. Grunert HP; Landt O; Zirpel-Giesebrecht M; Backmann J; Heinemann U; Saenger W; Hahn U Protein Eng; 1993 Sep; 6(7):739-44. PubMed ID: 8248097 [TBL] [Abstract][Full Text] [Related]
16. Computer modeling studies on the subsite interactions of ribonuclease T1. Balaji PV; Rao VS J Biomol Struct Dyn; 1992 Apr; 9(5):971-89. PubMed ID: 1326282 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a substrate-binding subsite in ribonuclease T1. Crystal structure of the complex with two guanosines, and model building of the complex with the substrate guanylyl-3',5'-guanosine. Lenz A; Cordes F; Heinemann U; Saenger W J Biol Chem; 1991 Apr; 266(12):7661-7. PubMed ID: 1902225 [TBL] [Abstract][Full Text] [Related]
18. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity. Chen DT; Lin A Protein Eng; 2002 Dec; 15(12):997-1003. PubMed ID: 12601139 [TBL] [Abstract][Full Text] [Related]
19. Computer modeling studies on the binding of 2',5'-linked dinucleoside phosphates to ribonuclease T1-influence of subsite interactions on the substrate specificity. Balaji PV; Saenger W; Rao VS J Biomol Struct Dyn; 1993 Apr; 10(5):891-903. PubMed ID: 8391269 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of RNase T1 with 3'-guanylic acid and guanosine. Zegers I; Haikal AF; Palmer R; Wyns L J Biol Chem; 1994 Jan; 269(1):127-33. PubMed ID: 8276784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]