These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17354928)

  • 41. CAD-based graphical computer simulation in endoscopic surgery.
    Kuehnapfel UG; Neisius B
    Endosc Surg Allied Technol; 1993 Jun; 1(3):181-4. PubMed ID: 8055320
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computer-aided navigation for arthroscopic hip surgery using encoder linkages for position tracking.
    Monahan E; Shimada K
    Int J Med Robot; 2006 Sep; 2(3):271-8. PubMed ID: 17520642
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tip Position Control and Vibration Suppression of a Planar Two-Link Rigid-Flexible Underactuated Manipulator.
    Meng Q; Lai X; Yan Z; Wu M
    IEEE Trans Cybern; 2022 Jul; 52(7):6771-6783. PubMed ID: 33259322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners.
    Tsekos NV; Ozcan A; Christoforou E
    J Biomech Eng; 2005 Nov; 127(6):972-80. PubMed ID: 16438235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A review of magnetic resonance imaging compatible manipulators in surgery.
    Elhawary H; Zivanovic A; Davies B; Lampérth M
    Proc Inst Mech Eng H; 2006 Apr; 220(3):413-24. PubMed ID: 16808074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flexible Manipulator with Low-Melting-Point Alloy Actuation and Variable Stiffness.
    Wang H; Chen Z; Zuo S
    Soft Robot; 2022 Jun; 9(3):577-590. PubMed ID: 34152857
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Minimally invasive atrial fibrillation ablation combined with a new technique for thoracoscopic stapling of the left atrial appendage: case report.
    Balkhy HH; Chapman PD; Arnsdorf SE
    Heart Surg Forum; 2004; 7(6):353-5. PubMed ID: 15769703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A preliminary investigation into the design of pressure cushions and their potential applications for forearm robotic orthoses.
    Alavi N; Zampierin S; Komeili M; Cocuzza S; Debei S; Menon C
    Biomed Eng Online; 2017 May; 16(1):54. PubMed ID: 28482892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinematic problems of manipulators for minimal invasive surgery.
    Mueglitz J; Kunad G; Dautzenberg P; Neisius B; Trapp R
    Endosc Surg Allied Technol; 1993 Jun; 1(3):160-4. PubMed ID: 8055317
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of flexible endoscope steering using haptic guidance.
    Reilink R; Stramigioli S; Kappers AM; Misra S
    Int J Med Robot; 2011 Jun; 7(2):178-86. PubMed ID: 21462290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Device to provide intuitive assistance in laparoscope holding.
    Minor A; Ordorica R; Villalobos J; Galan M
    Ann Biomed Eng; 2009 Mar; 37(3):643-9. PubMed ID: 19125332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Water-jet outer sheath with braided shape memory polymer tubes for upper gastrointestinal tract screening.
    Yin L; Wang S; Zuo S
    Int J Med Robot; 2018 Dec; 14(6):e1944. PubMed ID: 30105839
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robotics and telemanipulation technologies for endoscopic surgery. A review of the ARTEMIS project. Advanced Robotic Telemanipulator for Minimally Invasive Surgery.
    Schurr MO; Buess G; Neisius B; Voges U
    Surg Endosc; 2000 Apr; 14(4):375-81. PubMed ID: 10790559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental telemanipulation in endoscopic surgery.
    Schurr MO; Breitwieser H; Melzer A; Kunert W; Schmitt M; Voges U; Buess G
    Surg Laparosc Endosc; 1996 Jun; 6(3):167-75. PubMed ID: 8743357
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Robotic hand-held surgical device: evaluation of end-effector's kinematics and development of proof-of-concept prototypes.
    Zahraee AH; Szewczyk J; Paik JK; Morel G
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):432-9. PubMed ID: 20879429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Landmark-based augmented reality system for paranasal and transnasal endoscopic surgeries.
    Thoranaghatte R; Garcia J; Caversaccio M; Widmer D; Gonzalez Ballester MA; Nolte LP; Zheng G
    Int J Med Robot; 2009 Dec; 5(4):415-22. PubMed ID: 19623600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Laser-scan endoscope system for intraoperative geometry acquisition and surgical robot safety management.
    Hayashibe M; Suzuki N; Nakamura Y
    Med Image Anal; 2006 Aug; 10(4):509-19. PubMed ID: 16624612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery.
    Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I
    Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Laparoscopic ultrasound manipulator with a spring-based elastic mechanism.
    Arata J; Fukami K; Oguri S; Onogi S; Ikeda T; Nakadate R; Sakaguchi M; Akahoshi T; Harada K; Mitsuishi M; Hashizume M
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1063-1072. PubMed ID: 29492881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.