BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17354933)

  • 21. Toward robot-assisted neurosurgical lasers.
    Motkoski JW; Yang FW; Lwu SH; Sutherland GR
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):892-8. PubMed ID: 23047855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral Radiance of Protoporphyrin IX Fluorescence and Its Histopathological Implications in 5-Aminolevulinic Acid-Guided Surgery for Glioblastoma.
    Yoneda T; Nonoguchi N; Ikeda N; Yagi R; Kawabata S; Furuse M; Hirose Y; Kuwabara H; Tamura Y; Kajimoto Y; Kuroiwa T
    Photomed Laser Surg; 2018 May; 36(5):266-272. PubMed ID: 29480754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma.
    Tsugu A; Ishizaka H; Mizokami Y; Osada T; Baba T; Yoshiyama M; Nishiyama J; Matsumae M
    World Neurosurg; 2011; 76(1-2):120-7. PubMed ID: 21839963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Intraoperative photo-dynamic diagnosis of brain tumors].
    Miyatake S; Kajimoto Y; Kuroiwa T
    Brain Nerve; 2009 Jul; 61(7):835-42. PubMed ID: 19618861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies.
    Lagman C; Chung LK; Pelargos PE; Ung N; Bui TT; Lee SJ; Voth BL; Yang I
    J Clin Neurosci; 2017 Feb; 36():20-26. PubMed ID: 27838155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery.
    Valdés PA; Jacobs V; Harris BT; Wilson BC; Leblond F; Paulsen KD; Roberts DW
    J Neurosurg; 2015 Sep; 123(3):771-80. PubMed ID: 26140489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Intraoperative fluorescent visualization and laser spectrosopy in intrinsic brain tumor surgery].
    Potapov AA; Gavrilov AG; Goriaĭnov SA; Gol'bin DA; Zelenkov PV; Kobiakov GL; Okhlopkov VA; Zhukov VIu; Shishkina LV; Shukhraĭ VA; Loshchenov VB; Savel'eva TA; Grachev PV; Kholodtsova MN; Kuz'min SG; Vorozhtsov GN
    Zh Vopr Neirokhir Im N N Burdenko; 2012; 76(5):3-11; discussion 12. PubMed ID: 23230689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-assisted planning for a concentric tube robotic system in neurosurgery.
    Granna J; Nabavi A; Burgner-Kahrs J
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):335-344. PubMed ID: 30478533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping ALA-induced PPIX fluorescence in normal brain and brain tumour using confocal fluorescence microscopy.
    Olivo M; Wilson BC
    Int J Oncol; 2004 Jul; 25(1):37-45. PubMed ID: 15201987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel robotic platform for laser-assisted transurethral surgery of the prostate.
    Russo S; Dario P; Menciassi A
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):489-500. PubMed ID: 25248176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Er:YAG laser osteotomy directed by sensor controlled systems.
    Rupprecht S; Tangermann K; Kessler P; Neukam FW; Wiltfang J
    J Craniomaxillofac Surg; 2003 Dec; 31(6):337-42. PubMed ID: 14637061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real time imaging of femtosecond laser induced nano-neurosurgery dynamics in C. elegans.
    Santos SI; Mathew M; Loza-Alvarez P
    Opt Express; 2010 Jan; 18(1):364-77. PubMed ID: 20173856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Penetration enhancement of two topical 5-aminolaevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation.
    Forster B; Klein A; Szeimies RM; Maisch T
    Exp Dermatol; 2010 Sep; 19(9):806-12. PubMed ID: 20636354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and control of a robotic system for assistive laser phonomicrosurgery.
    Mattos LS; Caldwell DG; Dellepiane M; Grant E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5411-5. PubMed ID: 21096272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time spectrum quantification of tumor-related fluorescence during neurosurgery: A preliminary report.
    Kamada K; Anei R; Kodama K; Kitajima Y; Ishizuka M; Hiroshima S; Ogawa H; Tamura Y; Takeuchi F
    Clin Neurol Neurosurg; 2019 Jun; 181():89-97. PubMed ID: 31026714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence image-guided surgery of brain tumors: explained step-by-step.
    Eljamel MS
    Photodiagnosis Photodyn Ther; 2008 Dec; 5(4):260-3. PubMed ID: 19356667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in Gliomas.
    Ma R; Watts C
    Acta Neurochir (Wien); 2016 Oct; 158(10):1935-41. PubMed ID: 27496021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Surgical robotics in neurosurgery].
    Haidegger T; Benyó Z
    Orv Hetil; 2009 Sep; 150(36):1701-11. PubMed ID: 19709985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory display for fluorescence-guided open brain tumor surgery.
    Black D; Hahn HK; Kikinis R; Wårdell K; Haj-Hosseini N
    Int J Comput Assist Radiol Surg; 2018 Jan; 13(1):25-35. PubMed ID: 28929305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic scanning of large tissue areas in neurosurgery using optical coherence tomography.
    Finke M; Kantelhardt S; Schlaefer A; Bruder R; Lankenau E; Giese A; Schweikard A
    Int J Med Robot; 2012 Sep; 8(3):327-36. PubMed ID: 22911978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.