BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 17355959)

  • 1. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
    Banerjee R; Schleicher E; Meier S; Viana RM; Pokorny R; Ahmad M; Bittl R; Batschauer A
    J Biol Chem; 2007 May; 282(20):14916-22. PubMed ID: 17355959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
    Bouly JP; Schleicher E; Dionisio-Sese M; Vandenbussche F; Van Der Straeten D; Bakrim N; Meier S; Batschauer A; Galland P; Bittl R; Ahmad M
    J Biol Chem; 2007 Mar; 282(13):9383-9391. PubMed ID: 17237227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoreduction of the folate cofactor in members of the photolyase family.
    Moldt J; Pokorny R; Orth C; Linne U; Geisselbrecht Y; Marahiel MA; Essen LO; Batschauer A
    J Biol Chem; 2009 Aug; 284(32):21670-83. PubMed ID: 19531478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
    Kao YT; Tan C; Song SH; Oztürk N; Li J; Wang L; Sancar A; Zhong D
    J Am Chem Soc; 2008 Jun; 130(24):7695-701. PubMed ID: 18500802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.
    Zeugner A; Byrdin M; Bouly JP; Bakrim N; Giovani B; Brettel K; Ahmad M
    J Biol Chem; 2005 May; 280(20):19437-40. PubMed ID: 15774475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.
    Huang Y; Baxter R; Smith BS; Partch CL; Colbert CL; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17701-6. PubMed ID: 17101984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles.
    Kleine T; Lockhart P; Batschauer A
    Plant J; 2003 Jul; 35(1):93-103. PubMed ID: 12834405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
    Brautigam CA; Smith BS; Ma Z; Palnitkar M; Tomchick DR; Machius M; Deisenhofer J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12142-7. PubMed ID: 15299148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae.
    Worthington EN; Kavakli IH; Berrocal-Tito G; Bondo BE; Sancar A
    J Biol Chem; 2003 Oct; 278(40):39143-54. PubMed ID: 12878596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
    Langenbacher T; Immeln D; Dick B; Kottke T
    J Am Chem Soc; 2009 Oct; 131(40):14274-80. PubMed ID: 19754110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions.
    Balland V; Byrdin M; Eker AP; Ahmad M; Brettel K
    J Am Chem Soc; 2009 Jan; 131(2):426-7. PubMed ID: 19140781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor.
    Partch CL; Clarkson MW; Ozgür S; Lee AL; Sancar A
    Biochemistry; 2005 Mar; 44(10):3795-805. PubMed ID: 15751956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Kottke T; Batschauer A; Ahmad M; Heberle J
    Biochemistry; 2006 Feb; 45(8):2472-9. PubMed ID: 16489739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases.
    Okafuji A; Biskup T; Hitomi K; Getzoff ED; Kaiser G; Batschauer A; Bacher A; Hidema J; Teranishi M; Yamamoto K; Schleicher E; Weber S
    DNA Repair (Amst); 2010 May; 9(5):495-505. PubMed ID: 20227927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.
    Zirak P; Penzkofer A; Moldt J; Pokorny R; Batschauer A; Essen LO
    J Photochem Photobiol B; 2009 Nov; 97(2):94-108. PubMed ID: 19800811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single amino acid residue tunes the stability of the fully reduced flavin cofactor and photorepair activity in photolyases.
    Wen B; Xu L; Tang Y; Jiang Z; Ge M; Liu L; Zhu G
    J Biol Chem; 2022 Aug; 298(8):102188. PubMed ID: 35753350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2.
    Eckel M; Steinchen W; Batschauer A
    Plant J; 2018 Oct; 96(2):389-403. PubMed ID: 30044014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C termini of Arabidopsis cryptochromes mediate a constitutive light response.
    Yang HQ; Wu YJ; Tang RH; Liu D; Liu Y; Cashmore AR
    Cell; 2000 Nov; 103(5):815-27. PubMed ID: 11114337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
    Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17696-700. PubMed ID: 17062752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair.
    Zhang M; Wang L; Zhong D
    Arch Biochem Biophys; 2017 Oct; 632():158-174. PubMed ID: 28802828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.