BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17356624)

  • 1. Multiscan time-domain optical coherence tomography for retina imaging.
    Rosa CC; Rogers J; Pedro J; Rosen R; Podoleanu A
    Appl Opt; 2007 Apr; 46(10):1795-808. PubMed ID: 17356624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic focus in optical coherence tomography for retinal imaging.
    Pircher M; Götzinger E; Hitzenberger CK
    J Biomed Opt; 2006; 11(5):054013. PubMed ID: 17092162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-simultaneous optical coherence tomography and confocal imaging.
    Trifanov I; Hughes M; Podoleanu AG; Rosen RB
    J Biomed Opt; 2008; 13(4):044015. PubMed ID: 19021343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm.
    Srinivasan VJ; Huber R; Gorczynska I; Fujimoto JG; Jiang JY; Reisen P; Cable AE
    Opt Lett; 2007 Feb; 32(4):361-3. PubMed ID: 17356653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
    Zawadzki RJ; Choi SS; Jones SM; Oliver SS; Werner JS
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1373-83. PubMed ID: 17429483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined confocal/en face T-scan-based ultrahigh-resolution optical coherence tomography in vivo retinal imaging.
    Cucu RG; Podoleanu AG; Rogers JA; Pedro J; Rosen RB
    Opt Lett; 2006 Jun; 31(11):1684-6. PubMed ID: 16688261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging.
    Chen Y; Burnes DL; de Bruin M; Mujat M; de Boer JF
    J Biomed Opt; 2009; 14(2):024016. PubMed ID: 19405746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image restoration method based on Hilbert transform for full-field optical coherence tomography.
    Na J; Choi WJ; Choi ES; Ryu SY; Lee BH
    Appl Opt; 2008 Jan; 47(3):459-66. PubMed ID: 18204734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation.
    Tao YK; Zhao M; Izatt JA
    Opt Lett; 2007 Oct; 32(20):2918-20. PubMed ID: 17938652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay.
    Watanabe Y; Sajima F; Itagaki T; Watanabe K; Shuto Y
    Appl Opt; 2009 Jun; 48(18):3401-6. PubMed ID: 19543348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-comb-based interferometer for profilometry and tomography.
    Choi S; Yamamoto M; Moteki D; Shioda T; Tanaka Y; Kurokawa T
    Opt Lett; 2006 Jul; 31(13):1976-8. PubMed ID: 16770404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter.
    Adler DC; Ko TH; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2878-80. PubMed ID: 15645810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system.
    Podoleanu AG; Dobre GM; Cernat R; Rogers JA; Pedro J; Rosen RB; Garcia P
    J Biomed Opt; 2007; 12(1):014019. PubMed ID: 17343494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-pass rotary mirror array for fast scanning optical delay line.
    Liu L; Chen NG
    Appl Opt; 2006 Jul; 45(21):5426-31. PubMed ID: 16826279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation.
    Yasuno Y; Endo T; Makita S; Aoki G; Itoh M; Yatagai T
    J Biomed Opt; 2006; 11(1):014014. PubMed ID: 16526891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images.
    Haeker M; Wu X; AbrĂ moff M; Kardon R; Sonka M
    Inf Process Med Imaging; 2007; 20():607-18. PubMed ID: 17633733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh-resolution full-field optical coherence tomography.
    Dubois A; Grieve K; Moneron G; Lecaque R; Vabre L; Boccara C
    Appl Opt; 2004 May; 43(14):2874-83. PubMed ID: 15143811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Retinal OCT: Vitreoretinal Interface].
    Mayer WJ; Haritoglou C
    Klin Monbl Augenheilkd; 2016 Oct; 233(10):1149-1155. PubMed ID: 27159327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.