These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17356715)

  • 1. In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403.
    Kowalczyk M; Borcz B; Płochocka D; Bardowski J
    Acta Biochim Pol; 2007; 54(1):71-8. PubMed ID: 17356715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals.
    Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W
    J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the transcription regulator CcpA from Lactococcus lactis.
    Loll B; Kowalczyk M; Alings C; Chieduch A; Bardowski J; Saenger W; Biesiadka J
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):431-6. PubMed ID: 17372346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate.
    Schumacher MA; Seidel G; Hillen W; Brennan RG
    J Mol Biol; 2007 May; 368(4):1042-50. PubMed ID: 17376479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction and purification of the CcpA protein from Lactococcus lactis.
    Kowalczyk M; Bardowski J
    Acta Biochim Pol; 2003; 50(2):455-9. PubMed ID: 12833169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P.
    Schumacher MA; Allen GS; Diel M; Seidel G; Hillen W; Brennan RG
    Cell; 2004 Sep; 118(6):731-41. PubMed ID: 15369672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the influence of HPrSer46P on CcpA-cre interaction.
    Aung-Hilbrich LM; Seidel G; Wagner A; Hillen W
    J Mol Biol; 2002 May; 319(1):77-85. PubMed ID: 12051938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes.
    Lulko AT; Buist G; Kok J; Kuipers OP
    J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site.
    Barrière C; Veiga-da-Cunha M; Pons N; Guédon E; van Hijum SA; Kok J; Kuipers OP; Ehrlich DS; Renault P
    J Bacteriol; 2005 Jun; 187(11):3752-61. PubMed ID: 15901699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site.
    Moir-Blais TR; Grundy FJ; Henkin TM
    J Bacteriol; 2001 Apr; 183(7):2389-93. PubMed ID: 11244084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of B. subtilis CcpA effector binding site.
    Chaptal V; Gueguen-Chaignon V; Poncet S; Lecampion C; Meyer P; Deutscher J; Galinier A; Nessler S; Moréra S
    Proteins; 2006 Aug; 64(3):814-6. PubMed ID: 16755587
    [No Abstract]   [Full Text] [Related]  

  • 14. The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis.
    Müller W; Horstmann N; Hillen W; Sticht H
    FEBS J; 2006 Mar; 273(6):1251-61. PubMed ID: 16519689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.
    Seidel G; Diel M; Fuchsbauer N; Hillen W
    FEBS J; 2005 May; 272(10):2566-77. PubMed ID: 15885105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363.
    Zomer AL; Buist G; Larsen R; Kok J; Kuipers OP
    J Bacteriol; 2007 Feb; 189(4):1366-81. PubMed ID: 17028270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CcpA mutants with differential activities in Bacillus subtilis.
    Sprehe M; Seidel G; Diel M; Hillen W
    J Mol Microbiol Biotechnol; 2007; 12(1-2):96-105. PubMed ID: 17183216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative lactose catabolic pathway in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Kok J; Renault P; Bardowski J
    Appl Environ Microbiol; 2005 Oct; 71(10):6060-9. PubMed ID: 16204522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the Lactococcal two-component system CesSR.
    Martínez B; Zomer AL; Rodríguez A; Kok J; Kuipers OP
    Mol Microbiol; 2007 Apr; 64(2):473-86. PubMed ID: 17493129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.