These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 17356715)
1. In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403. Kowalczyk M; Borcz B; Płochocka D; Bardowski J Acta Biochim Pol; 2007; 54(1):71-8. PubMed ID: 17356715 [TBL] [Abstract][Full Text] [Related]
2. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460 [TBL] [Abstract][Full Text] [Related]
3. Structure of the transcription regulator CcpA from Lactococcus lactis. Loll B; Kowalczyk M; Alings C; Chieduch A; Bardowski J; Saenger W; Biesiadka J Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):431-6. PubMed ID: 17372346 [TBL] [Abstract][Full Text] [Related]
4. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. Schumacher MA; Seidel G; Hillen W; Brennan RG J Mol Biol; 2007 May; 368(4):1042-50. PubMed ID: 17376479 [TBL] [Abstract][Full Text] [Related]
5. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403. Kowalczyk M; Cocaign-Bousquet M; Loubiere P; Bardowski J Arch Microbiol; 2008 Mar; 189(3):187-96. PubMed ID: 17909747 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Schumacher MA; Allen GS; Diel M; Seidel G; Hillen W; Brennan RG Cell; 2004 Sep; 118(6):731-41. PubMed ID: 15369672 [TBL] [Abstract][Full Text] [Related]
8. Quantification of the influence of HPrSer46P on CcpA-cre interaction. Aung-Hilbrich LM; Seidel G; Wagner A; Hillen W J Mol Biol; 2002 May; 319(1):77-85. PubMed ID: 12051938 [TBL] [Abstract][Full Text] [Related]
9. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. Licht A; Golbik R; Brantl S J Mol Biol; 2008 Jun; 380(1):17-30. PubMed ID: 18511073 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
11. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site. Barrière C; Veiga-da-Cunha M; Pons N; Guédon E; van Hijum SA; Kok J; Kuipers OP; Ehrlich DS; Renault P J Bacteriol; 2005 Jun; 187(11):3752-61. PubMed ID: 15901699 [TBL] [Abstract][Full Text] [Related]
12. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization. Jankovic I; Brückner R J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional activation of the Bacillus subtilis ackA promoter requires sequences upstream of the CcpA binding site. Moir-Blais TR; Grundy FJ; Henkin TM J Bacteriol; 2001 Apr; 183(7):2389-93. PubMed ID: 11244084 [TBL] [Abstract][Full Text] [Related]
14. Structural analysis of B. subtilis CcpA effector binding site. Chaptal V; Gueguen-Chaignon V; Poncet S; Lecampion C; Meyer P; Deutscher J; Galinier A; Nessler S; Moréra S Proteins; 2006 Aug; 64(3):814-6. PubMed ID: 16755587 [No Abstract] [Full Text] [Related]
15. The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis. Müller W; Horstmann N; Hillen W; Sticht H FEBS J; 2006 Mar; 273(6):1251-61. PubMed ID: 16519689 [TBL] [Abstract][Full Text] [Related]
16. The CcpA regulon of Streptococcus suis reveals novel insights into the regulation of the streptococcal central carbon metabolism by binding of CcpA to two distinct binding motifs. Willenborg J; de Greeff A; Jarek M; Valentin-Weigand P; Goethe R Mol Microbiol; 2014 Apr; 92(1):61-83. PubMed ID: 24673665 [TBL] [Abstract][Full Text] [Related]
17. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis. Seidel G; Diel M; Fuchsbauer N; Hillen W FEBS J; 2005 May; 272(10):2566-77. PubMed ID: 15885105 [TBL] [Abstract][Full Text] [Related]
18. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. Zomer AL; Buist G; Larsen R; Kok J; Kuipers OP J Bacteriol; 2007 Feb; 189(4):1366-81. PubMed ID: 17028270 [TBL] [Abstract][Full Text] [Related]
19. Trans-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis. Ujiie H; Matsutani T; Tomatsu H; Fujihara A; Ushida C; Miwa Y; Fujita Y; Himeno H; Muto A J Biochem; 2009 Jan; 145(1):59-66. PubMed ID: 18977770 [TBL] [Abstract][Full Text] [Related]
20. Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Tanaka Y; Teramoto H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Feb; 78(2):309-18. PubMed ID: 18183389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]