BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17356845)

  • 1. 3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3.
    Stellmer F; Keyser B; Burckhardt BC; Koepsell H; Streichert T; Glatzel M; Jabs S; Thiem J; Herdering W; Koeller DM; Goodman SI; Lukacs Z; Ullrich K; Burckhardt G; Braulke T; Mühlhausen C
    J Mol Med (Berl); 2007 Jul; 85(7):763-70. PubMed ID: 17356845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency.
    Schwob E; Hagos Y; Burckhardt G; Burckhardt BC
    Am J Physiol Renal Physiol; 2014 Dec; 307(12):F1373-9. PubMed ID: 25354943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.
    Thies B; Meyer-Schwesinger C; Lamp J; Schweizer M; Koeller DM; Ullrich K; Braulke T; Mühlhausen C
    Biochim Biophys Acta; 2013 Oct; 1832(10):1463-72. PubMed ID: 23623985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias.
    Hagos Y; Krick W; Braulke T; Mühlhausen C; Burckhardt G; Burckhardt BC
    Pflugers Arch; 2008 Oct; 457(1):223-31. PubMed ID: 18365245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions.
    Burckhardt BC; Lorenz J; Kobbe C; Burckhardt G
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F792-9. PubMed ID: 15561973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3.
    Kaufhold M; Schulz K; Breljak D; Gupta S; Henjakovic M; Krick W; Hagos Y; Sabolic I; Burckhardt BC; Burckhardt G
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1026-34. PubMed ID: 21865262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane topology structure of human high-affinity, sodium-dependent dicarboxylate transporter.
    Bai XY; Chen X; Sun AQ; Feng Z; Hou K; Fu B
    FASEB J; 2007 Aug; 21(10):2409-17. PubMed ID: 17426067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron.
    Breljak D; Ljubojević M; Hagos Y; Micek V; Balen Eror D; Vrhovac Madunić I; Brzica H; Karaica D; Radović N; Kraus O; Anzai N; Koepsell H; Burckhardt G; Burckhardt BC; Sabolić I
    Am J Physiol Renal Physiol; 2016 Jul; 311(1):F227-38. PubMed ID: 27053689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency.
    Sauer SW; Okun JG; Fricker G; Mahringer A; Müller I; Crnic LR; Mühlhausen C; Hoffmann GF; Hörster F; Goodman SI; Harding CO; Koeller DM; Kölker S
    J Neurochem; 2006 May; 97(3):899-910. PubMed ID: 16573641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione is a low-affinity substrate of the human sodium-dependent dicarboxylate transporter.
    Schorbach L; Krick W; Burckhardt G; Burckhardt BC
    Nephron Physiol; 2013; 124(1-2):1-5. PubMed ID: 24247155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of benzylpenicillin and non-steroidal anti-inflammatory drugs with the sodium-dependent dicarboxylate transporter NaDC-3.
    Burckhardt BC; Lorenz J; Burckhardt G; Steffgen J
    Cell Physiol Biochem; 2004; 14(4-6):415-24. PubMed ID: 15319545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of sodium-dicarboxylate cotransporter-3 from winter flounder kidney by protein kinase C.
    Hagos Y; Burckhardt BC; Larsen A; Mathys C; Gronow T; Bahn A; Wolff NA; Burckhardt G; Steffgen J
    Am J Physiol Renal Physiol; 2004 Jan; 286(1):F86-93. PubMed ID: 13129854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I.
    Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney.
    Pajor AM; Sun NN
    Am J Physiol Renal Physiol; 2000 Sep; 279(3):F482-90. PubMed ID: 10966927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of renal Na+ dicarboxylate cotransporter 1 by Na+/H+ exchanger regulating factor 2, serum and glucocorticoid inducible kinase isoforms, and protein kinase B.
    Boehmer C; Embark HM; Bauer A; Palmada M; Yun CH; Weinman EJ; Endou H; Cohen P; Lahme S; Bichler KH; Lang F
    Biochem Biophys Res Commun; 2004 Jan; 313(4):998-1003. PubMed ID: 14706641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane translocation of glutaric acid and its derivatives.
    Mühlhausen C; Burckhardt BC; Hagos Y; Burckhardt G; Keyser B; Lukacs Z; Ullrich K; Braulke T
    J Inherit Metab Dis; 2008 Apr; 31(2):188-93. PubMed ID: 18404412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexus.
    Sauer SW; Opp S; Mahringer A; Kamiński MM; Thiel C; Okun JG; Fricker G; Morath MA; Kölker S
    Biochim Biophys Acta; 2010 Jun; 1802(6):552-60. PubMed ID: 20302929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells.
    Lamp J; Keyser B; Koeller DM; Ullrich K; Braulke T; Mühlhausen C
    J Biol Chem; 2011 May; 286(20):17777-84. PubMed ID: 21454630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, maturation, and trafficking of human Na+-dicarboxylate cotransporter NaDC1 requires the chaperone activity of cyclophilin B.
    Bergeron MJ; Bürzle M; Kovacs G; Simonin A; Hediger MA
    J Biol Chem; 2011 Apr; 286(13):11242-53. PubMed ID: 21257749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OKP cells express the Na-dicarboxylate cotransporter NaDC-1.
    Aruga S; Pajor AM; Nakamura K; Liu L; Moe OW; Preisig PA; Alpern RJ
    Am J Physiol Cell Physiol; 2004 Jul; 287(1):C64-72. PubMed ID: 14973148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.