These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17356919)

  • 1. Dimensions and circumferential stress-strain relation in the porcine esophagus in vitro determined by combined impedance planimetry and high-frequency ultrasound.
    Zhao J; Jørgensen CS; Liao D; Gregersen H
    Dig Dis Sci; 2007 May; 52(5):1338-44. PubMed ID: 17356919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of biomechanical properties in guinea pig esophagus by means of high frequency ultrasound and impedance planimetry.
    Assentoft JE; Gregersen H; O'Brien WD
    Dig Dis Sci; 2000 Jul; 45(7):1260-6. PubMed ID: 10961701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of porcine coronary arteries ex vivo employing impedance planimetry: a new intravascular technique.
    Frøbert O; Gregersen H; Bagger JP
    Ann Biomed Eng; 1996; 24(1):148-55. PubMed ID: 8669712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance planimetric characterization of the distal oesophagus in the Goettingen minipig.
    Gregersen H; Vinter-Jensen L; Juhl CO; Dajani EZ
    J Biomech; 1996 Jan; 29(1):63-8. PubMed ID: 8839018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new combined high-frequency ultrasound-impedance planimetry measuring system for the quantification of organ wall biomechanics in vivo.
    Jørgensen CS; Dall FH; Jensen SL; Gregersen H
    J Biomech; 1995 Jul; 28(7):863-7. PubMed ID: 7657684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical remodeling of the chronically obstructed Guinea pig small intestine.
    Storkholm JH; Zhao J; Villadsen GE; Hager H; Jensen SL; Gregersen H
    Dig Dis Sci; 2007 Feb; 52(2):336-46. PubMed ID: 17219069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensions and mechanical properties of porcine aortic segments determined by combined impedance planimetry and high-frequency ultrasound.
    Storkholm JH; Villadsen GE; Krogh K; Jørgensen CS; Gregersen H
    Med Biol Eng Comput; 1997 Jan; 35(1):21-6. PubMed ID: 9136186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical properties of the anterior urethra of the male rabbit--a study using impedance planimetry.
    Andersen HL; Duch BU; Gregersen H; Ledet T; Djurhuus JC
    Scand J Urol Nephrol; 2004; 38(2):99-111. PubMed ID: 15204388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-cross-sectional area relations and elasticity in the rabbit oesophagus in vivo.
    Gregersen H; Christensen LL
    Digestion; 1996; 57(3):174-9. PubMed ID: 8739091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static elastic wall properties of the abdominal porcine aorta in vitro and in vivo.
    Storkholm JH; Frøbert O; Gregersen H
    Eur J Vasc Endovasc Surg; 1997 Jan; 13(1):31-6. PubMed ID: 9046911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of atropine on the biomechanical properties of the oesophageal wall in humans.
    Takeda T; Kassab G; Liu J; Nabae T; Mittal RK
    J Physiol; 2003 Mar; 547(Pt 2):621-8. PubMed ID: 12562937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical wall properties of the human rectum. A study with impedance planimetry.
    Dall FH; Jørgensen CS; Houe D; Gregersen H; Djurhuus JC
    Gut; 1993 Nov; 34(11):1581-6. PubMed ID: 8244148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance planimetry: an integrated approach for assessing sensory, active, and passive biomechanical properties of the human esophagus.
    Rao SS; Hayek B; Summers RW
    Am J Gastroenterol; 1995 Mar; 90(3):431-8. PubMed ID: 7872283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional differences exist in elastic wall properties in the ureter.
    Gregersen H; Knudsen L; Eika B; Frøkiaer J; Djurhuus JC
    Scand J Urol Nephrol; 1996 Oct; 30(5):343-8. PubMed ID: 8936621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distension-evoked motility analysis in human esophagus.
    Liao D; Villadsen GE; Gregersen H
    Neurogastroenterol Motil; 2013 May; 25(5):407-12, e296-7. PubMed ID: 23360205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo assessment of luminal cross-sectional areas and circumferential tension-strain relations of the porcine aorta.
    Frøbert O; Storkholm JH; Gregersen H; Bagger JP
    Scand J Thorac Cardiovasc Surg; 1996; 30(1):11-9. PubMed ID: 8727852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic properties of the isolated perfused porcine duodenum.
    Jørgensen CS; Dall FH; Storkholm J; Jensen SL; Gregersen H
    Dig Dis; 1991; 9(6):401-7. PubMed ID: 1804580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel ultrasound technique to study the biomechanics of the human esophagus in vivo.
    Takeda T; Kassab G; Liu J; Puckett JL; Mittal RR; Mittal RK
    Am J Physiol Gastrointest Liver Physiol; 2002 May; 282(5):G785-93. PubMed ID: 11960775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel gel bolus to improve impedance-based measurements of esophageal cross-sectional area during primary peristalsis.
    Ledgerwood M; Zifan A; Lin W; de Alva J; Chen H; Mittal RK
    Neurogastroenterol Motil; 2021 Jul; 33(7):e14071. PubMed ID: 33373474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical characteristics of the human esophagus.
    Orvar KB; Gregersen H; Christensen J
    Dig Dis Sci; 1993 Feb; 38(2):197-205. PubMed ID: 8425432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.