BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17357155)

  • 1. Homology modeling and molecular dynamics simulations of the glycine receptor ligand binding domain.
    Speranskiy K; Cascio M; Kurnikova M
    Proteins; 2007 Jun; 67(4):950-60. PubMed ID: 17357155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology modeling and molecular dynamics simulations of the alpha1 glycine receptor reveals different states of the channel.
    Cheng MH; Cascio M; Coalson RD
    Proteins; 2007 Aug; 68(2):581-93. PubMed ID: 17469203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted structure of the extracellular region of ligand-gated ion-channel receptors shows SH2-like and SH3-like domains forming the ligand-binding site.
    Gready JE; Ranganathan S; Schofield PR; Matsuo Y; Nishikawa K
    Protein Sci; 1997 May; 6(5):983-98. PubMed ID: 9144769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural γ
    Ayan M; Essiz S
    J Mol Model; 2018 Jul; 24(8):206. PubMed ID: 30008086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recombinant glycine receptor fragment forms homo-oligomers distinct from its GABA(A) counterpart.
    Xue H; Shi H; Tsang SY; Zheng H; Savva CG; Sun J; Holzenburg A
    J Mol Biol; 2001 Oct; 312(5):915-20. PubMed ID: 11580237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of ethanol binding to the transmembrane domain of the glycine receptor: implications for the channel potentiation mechanism.
    Cheng MH; Coalson RD; Cascio M
    Proteins; 2008 May; 71(2):972-81. PubMed ID: 18004757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsecond simulations indicate that ethanol binds between subunits and could stabilize an open-state model of a glycine receptor.
    Murail S; Wallner B; Trudell JR; Bertaccini E; Lindahl E
    Biophys J; 2011 Apr; 100(7):1642-50. PubMed ID: 21463577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the pharmacological properties of distinct subunit interfaces within heteromeric glycine receptors reveals a functional ββ agonist-binding site.
    Dutertre S; Drwal M; Laube B; Betz H
    J Neurochem; 2012 Jul; 122(1):38-47. PubMed ID: 22486198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology modeling of a human glycine alpha 1 receptor reveals a plausible anesthetic binding site.
    Bertaccini EJ; Shapiro J; Brutlag DL; Trudell JR
    J Chem Inf Model; 2005; 45(1):128-35. PubMed ID: 15667138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors.
    Cheng X; Wang H; Grant B; Sine SM; McCammon JA
    PLoS Comput Biol; 2006 Sep; 2(9):e134. PubMed ID: 17009865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.
    Brejc K; van Dijk WJ; Klaassen RV; Schuurmans M; van Der Oost J; Smit AB; Sixma TK
    Nature; 2001 May; 411(6835):269-76. PubMed ID: 11357122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple interaction regions in the orthosteric ligand binding domain of the α7 neuronal nicotinic acetylcholine receptor.
    Xiao Y; Hammond PS; Mazurov AA; Yohannes D
    J Chem Inf Model; 2012 Nov; 52(11):3064-73. PubMed ID: 23092444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of 5-HT3 receptor agonist-binding residues using homology modeling.
    Reeves DC; Sayed MF; Chau PL; Price KL; Lummis SC
    Biophys J; 2003 Apr; 84(4):2338-44. PubMed ID: 12668442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine binding protein (AChBP): a secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels.
    Sixma TK; Smit AB
    Annu Rev Biophys Biomol Struct; 2003; 32():311-34. PubMed ID: 12695308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the structural basis for zinc inhibition of the glycine receptor.
    Nevin ST; Cromer BA; Haddrill JL; Morton CJ; Parker MW; Lynch JW
    J Biol Chem; 2003 Aug; 278(31):28985-92. PubMed ID: 12740384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crosslinking constraints and computational models as complementary tools in modeling the extracellular domain of the glycine receptor.
    Liu Z; Szarecka A; Yonkunas M; Speranskiy K; Kurnikova M; Cascio M
    PLoS One; 2014; 9(7):e102571. PubMed ID: 25025226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical studies of the M2 transmembrane segment of the glycine receptor: models of the open pore structure and current-voltage characteristics.
    Cheng MH; Cascio M; Coalson RD
    Biophys J; 2005 Sep; 89(3):1669-80. PubMed ID: 15951389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural consequences of D481N/K483Q mutation at glycine binding site of NMDA ionotropic glutamate receptors: a molecular dynamics study.
    Blaise MC; Bhattacharyya D; Sowdhamini R; Pradhan N
    J Biomol Struct Dyn; 2005 Feb; 22(4):399-410. PubMed ID: 15588104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression and functional characterization of the extracellular domain of the human alpha1 glycine receptor.
    Liu Z; Ramanoudjame G; Liu D; Fox RO; Jayaraman V; Kurnikova M; Cascio M
    Biochemistry; 2008 Sep; 47(37):9803-10. PubMed ID: 18710260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-supported homology modeling of the human angiotensin II type 1 (AT(1)) receptor: insights into the molecular determinants of telmisartan binding.
    Patny A; Desai PV; Avery MA
    Proteins; 2006 Dec; 65(4):824-42. PubMed ID: 17034041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.