These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17357986)

  • 1. Vinylogous Amadori rearrangement: implications in food and biological systems.
    Yaylayan VA; Locas CP
    Mol Nutr Food Res; 2007 Apr; 51(4):437-44. PubMed ID: 17357986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strecker type degradation of phenylalanine by 4-hydroxy-2-nonenal in model systems.
    Hidalgo FJ; Gallardo E; Zamora R
    J Agric Food Chem; 2005 Dec; 53(26):10254-9. PubMed ID: 16366724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction Mechanism of Covalent Modification of Phosphatidylethanolamine Lipids by Reactive Aldehydes 4-Hydroxy-2-nonenal and 4-Oxo-2-nonenal.
    Vazdar K; Vojta D; Margetić D; Vazdar M
    Chem Res Toxicol; 2017 Mar; 30(3):840-850. PubMed ID: 28222263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-hydroxy-2-alkenals in polyunsaturated fatty acids-fortified infant formulas and other commercial food products.
    Surh J; Lee S; Kwon H
    Food Addit Contam; 2007 Nov; 24(11):1209-18. PubMed ID: 17852396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction.
    Stadler RH; Robert F; Riediker S; Varga N; Davidek T; Devaud S; Goldmann T; Hau J; Blank I
    J Agric Food Chem; 2004 Aug; 52(17):5550-8. PubMed ID: 15315399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemistry of Amadori rearrangement products: analysis, synthesis, kinetics, reactions, and spectroscopic properties.
    Yaylayan VA; Huyghues-Despointes A
    Crit Rev Food Sci Nutr; 1994; 34(4):321-69. PubMed ID: 7945894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.
    Catalá A
    Chem Phys Lipids; 2009 Jan; 157(1):1-11. PubMed ID: 18977338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring carbonyl-amine reaction between pyruvic acid and alpha-amino alcohols by FTIR spectroscopy--a possible route to Amadori products.
    Wnorowski A; Yaylayan VA
    J Agric Food Chem; 2003 Oct; 51(22):6537-43. PubMed ID: 14558775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strecker-type degradation of phenylalanine initiated by 4-oxo-2-alkenals in comparison to that initiated by 2,4-alkadienals, 4,5-epoxy-2-alkenals, or 4-hydroxy-2-nonenal.
    Zamora R; Alcón E; Hidalgo FJ
    J Agric Food Chem; 2013 Oct; 61(43):10231-7. PubMed ID: 23360317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR monitoring of oxazolidin-5-one formation and decomposition in a glycolaldehyde-phenylalanine model system by isotope labeling techniques.
    Chu FL; Yaylayan VA
    Carbohydr Res; 2009 Jan; 344(2):229-36. PubMed ID: 18992878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Carbonyl-Phenol Adducts Produced by Food Phenolic Trapping of 4-Hydroxy-2-hexenal and 4-Hydroxy-2-nonenal.
    Hidalgo FJ; Zamora R
    J Agric Food Chem; 2019 Feb; 67(7):2043-2051. PubMed ID: 30702290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amadori- and N-nitroso-Amadori compounds and their pyrolysis products. Chemical, analytical and biological aspects.
    Röper H; Röper S; Meyer B
    IARC Sci Publ; 1984; (57):101-11. PubMed ID: 6398292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of daily exposure to 4-hydroxy-2-alkenals in Korean foods containing n-3 and n-6 polyunsaturated fatty acids.
    Surh J; Kwon H
    Food Addit Contam; 2005 Aug; 22(8):701-8. PubMed ID: 16147425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detoxification of cytotoxic alpha,beta-unsaturated aldehydes by carnosine: characterization of conjugated adducts by electrospray ionization tandem mass spectrometry and detection by liquid chromatography/mass spectrometry in rat skeletal muscle.
    Aldini G; Granata P; Carini M
    J Mass Spectrom; 2002 Dec; 37(12):1219-28. PubMed ID: 12489081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally induced oxidative decarboxylation of copper complexes of amino acids and formation of strecker aldehyde.
    Nashalian O; Yaylayan VA
    J Agric Food Chem; 2014 Aug; 62(33):8518-23. PubMed ID: 25078730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxy-alkenals from the peroxidation of n-3 and n-6 fatty acids and urinary metabolites.
    Guichardant M; Bacot S; Molière P; Lagarde M
    Prostaglandins Leukot Essent Fatty Acids; 2006 Sep; 75(3):179-82. PubMed ID: 16828271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible and covalent binding of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine and selected amino acids.
    Nikolov PY; Yaylayan VA
    J Agric Food Chem; 2011 Jun; 59(11):6099-107. PubMed ID: 21557617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous determination of 4-hydroxy-2-alkenals, lipid peroxidation toxic products.
    Surh J; Kwon H
    Food Addit Contam; 2003 Apr; 20(4):325-30. PubMed ID: 12775473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maillard reaction and food processing. Application aspects.
    Chuyen NV
    Adv Exp Med Biol; 1998; 434():213-35. PubMed ID: 9598202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strecker-type degradation produced by the lipid oxidation products 4,5-epoxy-2-alkenals.
    Hidalgo FJ; Zamora R
    J Agric Food Chem; 2004 Nov; 52(23):7126-31. PubMed ID: 15537327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.